精英家教网 > 高中数学 > 题目详情
11.如图所示,在正方体ABCD-A1B1C1D1中,已知棱长为a,M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为(  )
A.$\frac{\sqrt{30}}{10}$B.$\frac{\sqrt{30}}{10}$aC.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$a

分析 以D为原点,DA为x轴,y轴,z轴,建立空间直角坐标系利用向量法能求出B1M与D1N所成角的余弦值.

解答 解:以D为原点,DA为x轴,y轴,z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为2,
则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0),
$\overrightarrow{{B}_{1}M}$=(-1,-1,-2),$\overrightarrow{{D}_{1}N}$=(1,0,-2),
设B1M与D1N所成角为θ,
则cosθ=|cos<$\overrightarrow{{B}_{1}M},\overrightarrow{{D}_{1}N}$>|=$\frac{|\overrightarrow{{B}_{1}M},\overrightarrow{{D}_{1}N}|}{|\overrightarrow{{B}_{1}M}|•|\overrightarrow{{D}_{1}N}|}$=$\frac{3}{\sqrt{6}•\sqrt{5}}$=$\frac{\sqrt{30}}{10}$.
∴B1M与D1N所成角的余弦值为$\frac{\sqrt{30}}{10}$.
故选:A.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.生产工艺工程中产品的尺寸偏差X(mm)~N(0,22),如果产品的尺寸与现实的尺寸偏差的绝对值不超过4mm的为合格品,求生产5件产品的合格率不小于80%的概率.(精确到0.001)((0.954 4)5≈0.791 9;(0.954 4)4≈0.8297)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平面向量$\overrightarrow a$和$\overrightarrow b$的夹角等于$\frac{π}{3}$,$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,则$|{\overrightarrow a-2\overrightarrow b}|$=(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{a}{x}$.
(1)当a<0时,证明函数f(x)在(0,+∞)是单调函数;
(2)当a<e时,函数f(x)在区间[1,e]上的最小值是$\frac{4}{3}$,求a的值;
(3)设g(x)=f(x)-$\frac{a}{x}$,A,B是函数g(x)图象上任意不同的两点,记线段AB的中点的横坐标是x0,证明直线AB的斜率k>g'(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算复数:$\frac{3-i}{2+i}$=1-i.(i为虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(-1,0,1),B(0,0,1),C(2,2,2),D(0,0,3),则向量$\overrightarrow{AB}$与$\overrightarrow{CD}$的夹角的余弦值为-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin2x+sinxcosx+1的最小正周期是(  )
A.B.πC.$\frac{3}{2}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某多面体的三视图如图所示,则该多面体的外接球的表面积为41πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.老师带甲乙丙丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生的回答如下:
甲说:“我们四人都没考好”;
乙说:“我们四人中有人考得好”;
丙说:“乙和丁至少有一人没考好”;
丁说:“我没考好”.
成绩出来后发现,四名学生中有且只有两人说对了,他们是(  )
A.甲、丙B.乙、丁C.丙、丁D.乙、丙

查看答案和解析>>

同步练习册答案