精英家教网 > 高中数学 > 题目详情
6.计算复数:$\frac{3-i}{2+i}$=1-i.(i为虚数单位)

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{3-i}{2+i}$=$\frac{(3-i)(2-i)}{(2+i)(2-i)}=\frac{5-5i}{5}=1-i$.
故答案为:1-i.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.从1到9的正整数中任意抽取两个数相加,所得的和为奇数的不同情形种数是20.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\frac{x}{e^x}$,定义f1(x)=f'(x),f2(x)=f1′(x),f3(x)=f2′(x),…fn+1(x)=fn′(x),经计算f1(x)=$\frac{1-x}{e^x},{f_2}(x)=\frac{x-2}{e^x},{f_3}(x)=\frac{3-x}{e^x}$,…,则fn(x)=$\frac{(-1)^{n}(x-n)}{{e}^{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则函数f(x)的极值点的个数(  )
A.0个B.1个C.两个D.三个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.存在θ∈R,使得关于θ的不等式cos2θ>2mcosθ-4m+7成立,则实数m的取值范围为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,在正方体ABCD-A1B1C1D1中,已知棱长为a,M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为(  )
A.$\frac{\sqrt{30}}{10}$B.$\frac{\sqrt{30}}{10}$aC.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…an(x-1)n,其中n∈N*且an-2=112,a0+a1+a2+a3+…an=38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,直线x+2y-3=0被圆x2+y2-4x+2y+1=0截得的弦长为$\frac{2\sqrt{55}}{5}$.

查看答案和解析>>

同步练习册答案