精英家教网 > 高中数学 > 题目详情
14.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则函数f(x)的极值点的个数(  )
A.0个B.1个C.两个D.三个

分析 由题意可知函数的导函数为(x0-2)(x0+1)2 ,求出函数的单调区间,求出函数的极值点的个数即可.

解答 解:由题意可知函数的导函数为f′(x)=(x0-2)(x0+1)2
令f′(x)>0,解得:x>2,
∴f(x)在(-∞,2)递减,在(2,+∞)递增,
∴f(x)在极小值是f(2),
故函数f(x)的极值点的个数是1个,
故选:B.

点评 此题主要考查函数导函数的性质及函数的单调性,考查函数的极值点,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知圆锥的底面半径为1,其轴截面为等边三角形,则该圆锥的侧面积为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆锥曲线mx2+y2=1的一个焦点与抛物线x2=8y的焦点重合,则此圆锥曲线的离心率为(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平面向量$\overrightarrow a$和$\overrightarrow b$的夹角等于$\frac{π}{3}$,$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,则$|{\overrightarrow a-2\overrightarrow b}|$=(  )
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项和Sn满足Sn=2an-1,则|a1-18|+|a2-18|+…|a10-18|=961.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{a}{x}$.
(1)当a<0时,证明函数f(x)在(0,+∞)是单调函数;
(2)当a<e时,函数f(x)在区间[1,e]上的最小值是$\frac{4}{3}$,求a的值;
(3)设g(x)=f(x)-$\frac{a}{x}$,A,B是函数g(x)图象上任意不同的两点,记线段AB的中点的横坐标是x0,证明直线AB的斜率k>g'(x0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算复数:$\frac{3-i}{2+i}$=1-i.(i为虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin2x+sinxcosx+1的最小正周期是(  )
A.B.πC.$\frac{3}{2}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆O的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}$(θ为参数,0≤θ<2π).
(1)求圆心和半径;
(2)若圆O上点M对应的参数θ=$\frac{5π}{3}$,求点M的坐标.

查看答案和解析>>

同步练习册答案