精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求实数m的取值范围.

分析 (1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值的性质求出f(x)的最小值,从而求出m的范围即可.

解答 解:(1)问题等价于$\left\{\begin{array}{l}{x<\frac{1}{2}}\\{4-4x≤5}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{2}≤x≤\frac{3}{2}}\\{2≤5}\end{array}\right.$或$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{4x-4≤5}\end{array}\right.$,
故不等式的解集是[-$\frac{1}{4}$,$\frac{9}{4}$];
(2)若f(x)+m≠0恒成立,
即f(x)+m=0在R上无解,
又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,
故f(x)的最小值是2,
故m>-2.

点评 本题考查了解绝对值不等式问题,考查绝对值的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知圆锥曲线mx2+y2=1的一个焦点与抛物线x2=8y的焦点重合,则此圆锥曲线的离心率为(  )
A.2B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算复数:$\frac{3-i}{2+i}$=1-i.(i为虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=sin2x+sinxcosx+1的最小正周期是(  )
A.B.πC.$\frac{3}{2}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果x-1+yi与i-3x是共轭复数(x,y是实数),则x+y=(  )
A.-1B.1C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某多面体的三视图如图所示,则该多面体的外接球的表面积为41πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,已知D为AB上一点,∠ACD=α,∠BCD=β,CD2=AD•BD,求证:sinAsinB=sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆O的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2sinθ\end{array}$(θ为参数,0≤θ<2π).
(1)求圆心和半径;
(2)若圆O上点M对应的参数θ=$\frac{5π}{3}$,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲乙两人轮流掷一颗散子,第一次甲掷,第二次乙掷…某次掷完后,如果最后三次掷出的点数之和是2的倍数,且最后两次掷出的点数之和不是3的倍数,则游戏结束,甲获胜.如果最后两次掷出的点数之和是3的倍数,且最后三次掷出的点数之和不是2的倍数,游戏也结束,乙获胜.其余情况下,游戏继续进行,试求乙获胜的概率.
注如果掷散次数不足三次,则“最后三次”掷出点敷和不是2的倍数.

查看答案和解析>>

同步练习册答案