分析 分别在△ACD和△BCD中使用正弦定理,可得CDsinα=ADsinA,CDsinβ=BDsinB,两式子相乘后由已知即可证明.
解答 证明:∵在△ACD中,由正弦定理得:$\frac{CD}{sinA}=\frac{AD}{sinα}$,可得:CDsinα=ADsinA,
在△BCD中,由正弦定理得:$\frac{CD}{sinB}=\frac{BD}{sinβ}$,可得:CDsinβ=BDsinB,
∴CD2sinαsinβ=AD•BD•sinAsinB,
∵CD2=AD•BD,
∴sinAsinB=sinαsinβ.得证.
点评 本题主要考查了正弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 该几何体体积为$\frac{5}{6}$ | B. | 该几何体体积可能为$\frac{2}{3}$ | ||
| C. | 该几何体表面积应为$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$ | D. | 该几何体表面积应为$\frac{7}{2}+\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$ | B. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ | C. | $[-\sqrt{3},\sqrt{3}]$ | D. | $({-\sqrt{2},\sqrt{2}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com