精英家教网 > 高中数学 > 题目详情
18.已知tanα=3,计算:
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(Ⅱ)sinα•cosα.

分析 (Ⅰ)分子、分母同除以cosα,利用同角三角函数基本关系式即可计算得解.
(Ⅱ)将分母看成1,即两弦值的平方和,由已知,利用同角三角函数基本关系式即可计算得解.

解答 (本题满分为12分)
解:(Ⅰ)∵tanα=3,
∴$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{4×3-2}{5+3×3}$=$\frac{5}{7}$.…(6分)
(Ⅱ)∵tanα=3,
∴sinα•cosα=$\frac{sinα•cosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{3}{{3}^{2}+1}$=$\frac{3}{10}$.…(12分)

点评 本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在极坐标系中,与点(3,-$\frac{π}{3}$)关于极轴所在直线对称的点的极坐标是(  )
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.棱长为a的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,并且图中三角形(正四面体的截面)的面积是3$\sqrt{2}$,则a等于(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数f(x)=sin2x的图象向右平移$\frac{π}{4}$个单位长度后得到函数g(x)的图象,则下列说法正确的是(  )
A.g(x)在(0,$\frac{π}{4}$)上单调递增,且为奇函数
B.g(x)的最大值为1,其图象关于直线x=$\frac{π}{2}$对称
C.g(x)在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,且为偶函数
D.g(x)的周期为π,其图象关于点($\frac{3π}{8}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC的三个内角分别记为A,B,C,若tanAtanB=tanA+tanB+1,则cosC的值是(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,且c=2a,则cosB等于(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{3}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图,则该几何体的外接球表面积20π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$x2+alnx
(1)若a=-1,求函数f(x)的极值,并指出极大值还是极小值;
(2)若a=1,求函数f(x)在[1,e]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的奇数项a1,a3,a5,…a2k-1…构成首项a1=1等差数列,偶数项构成公比q=2的等比数列,且a1,a2,a3成等比数列,a4,a5,a7成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{2n+1}}{{a}_{2n}}$,Tn=b1.b2…bn,求正整数k,使得对任意n∈N*,均有Tk≥Tn

查看答案和解析>>

同步练习册答案