17£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÓÒ¶¥µã¡¢É϶¥µã·Ö±ðΪA¡¢B£¬×ø±êÔ­µãµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{{4\sqrt{3}}}{3}$£¬ÇÒ$a=\sqrt{2}b$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²CµÄ×ó½¹µãF1µÄÖ±Ïßl½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬ÇÒ¸ÃÍÖÔ²ÉÏ´æÔÚµãP£¬Ê¹µÃËıßÐÎMONP£¨Í¼ÐÎÉϵÄ×Öĸ°´´Ë˳ÐòÅÅÁУ©Ç¡ºÃΪƽÐÐËıßÐΣ¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©Éè³öÖ±ÏßABµÄ·½³ÌΪbx+ay-ab=0£¬ÀûÓÃ×ø±êÔ­µãµ½Ö±ÏßABµÄ¾àÀ룬ÒÔ¼°$a=\sqrt{2}b$£¬¿ÉµÃÍÖÔ²µÄ·½³Ì£®
£¨2£©Çó³öÍÖÔ²µÄ×󽹵㣬ÉèÖ±Ïß$l£ºx=my-2\sqrt{2}$£¬µãM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏßÓëÍÖÔ²·½³Ì£¬ÀûÓõãP£¨x1+x2£¬y1+y2£©ÔÚÍÖÔ²ÉÏ£¬Çó³öm£¬¿ÉµÃÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÉèÖ±ÏßABµÄ·½³ÌΪbx+ay-ab=0£¬×ø±êÔ­µãµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{{4\sqrt{3}}}{3}=\frac{ab}{{\sqrt{{a^2}+{b^2}}}}⇒\frac{{{a^2}{b^2}}}{{{a^2}+{b^2}}}=\frac{16}{3}$£¬ÓÖ$a=\sqrt{2}b$£¬½âµÃ$a=4£¬b=2\sqrt{2}$£¬¹ÊÍÖÔ²µÄ·½³ÌΪ$\frac{x^2}{16}+\frac{y^2}{8}=1$
£¨2£©ÓÉ£¨1£©¿ÉÇóµÃÍÖÔ²µÄ×ó½¹µãΪ${F_1}£¨-2\sqrt{2}£¬0£©$£¬
Ò×ÖªÖ±ÏßlµÄбÂʲ»Îª0£¬¹Ê¿ÉÉèÖ±Ïß$l£ºx=my-2\sqrt{2}$£¬µãM£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
ÒòΪËıßÐÎMONPΪƽÐÐËıßÐΣ¬ËùÒÔ$\overrightarrow{OP}=\overrightarrow{OM}+\overrightarrow{ON}=£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©⇒P£¨{x_1}+{x_2}£¬{y_1}+{y_2}£©$£¬
ÁªÁ¢$\left\{\begin{array}{l}x=my-2\sqrt{2}\\{x^2}+2{y^2}-16=0\end{array}\right.⇒£¨{m^2}+2£©{y^2}-4\sqrt{2}my-8=0$⇒$\left\{\begin{array}{l}¡÷=64£¨{m^2}+1£©£¾0\\{y_1}+{y_2}=\frac{{4\sqrt{2}m}}{{{m^2}+2}}\\{x_1}+{x_2}=m£¨{y_1}+{y_2}£©-4\sqrt{2}\end{array}\right.⇒\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{-8\sqrt{2}}}{{{m^2}+2}}\\{y_1}+{y_2}=\frac{{4\sqrt{2}m}}{{{m^2}+2}}\end{array}\right.$£¬
ÒòΪµãP£¨x1+x2£¬y1+y2£©ÔÚÍÖÔ²ÉÏ£¬
ËùÒÔ${£¨{x_1}+{x_2}£©^2}+2{£¨{y_1}+{y_2}£©^2}=16⇒{£¨\frac{{-8\sqrt{2}}}{{{m^2}+2}}£©^2}+2{£¨\frac{{4\sqrt{2}}}{{{m^2}+2}}£©^2}=16⇒$$m=¡À\sqrt{2}$£¬
ÄÇôֱÏßlµÄ·½³ÌΪ$x=¡À\sqrt{2}y-2\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã¬Éè¶ø²»ÇóÊǼò»¯½âÌâµÄ²ßÂÔ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{a}^{x}-1}{{a}^{x}+1}$£¨a£¾1£©
£¨¢ñ£©ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ
£¨¢ò£©ÅжÏf£¨x£©ÔÚ£¨-¡Þ£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£¬²¢Óö¨ÒåÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖªm¡ÊR£¬n¡ÊR£¬²¢ÇÒm+3n=1£¬Ôòem+e3nµÄ×îСֵ$2\sqrt{e}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èç¹û¶Ô¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬¶ÔÈÎÒâÁ½¸ö²»ÏàµÈµÄʵÊýx1£¬x2£¬¶¼ÓÐx1f£¨x1£©+x2f£¨x2£©£¾x1f£¨x2£©
+x2f£¨x1£©£¬Ôò³Æº¯Êýf£¨x£©Îª¡°Hº¯Êý¡±£¬¸ø³öÏÂÁк¯Êý ¢Ùy=x2£»¢Úy=ex+1£»¢Ûy=2x-sinx£»¢Üf£¨x£©=$\left\{\begin{array}{l}ln|x|{\;}_{\;}^{\;}x¡Ù0\\ 0{\;}_{\;}^{\;}{\;}_{\;}^{\;}x=0\end{array}\right.$£®ÒÔÉϺ¯ÊýÊÇ¡°Hº¯Êý¡±µÄËùÓÐÐòºÅΪ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Û¢ÜC£®¢Ù¢ÜD£®¢Ú¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ±àºÅΪ1£¬2£¬3£¬4£¬5£¬6µÄÁù¸öºÐ×ÓÖзÅÈëÁ½¸ö²»Í¬µÄСÇò£¬Ã¿¸öºÐ×ÓÖÐ×î¶à·ÅÈëÒ»¸öСÇò£¬ÇÒ²»ÄÜÔÚÁ½¸ö±àºÅÁ¬ÐøµÄºÐ×ÓÖÐͬʱ·ÅÈëСÇò£¬Ôò²»Í¬µÄ·ÅСÇòµÄ·½·¨ÓÐ20ÖÖ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÉèµÈ²îÊýÁÐ{an}ºÍµÈ±ÈÊýÁÐ{bn}Ê×Ïî¶¼ÊÇ1£¬¹«²îºÍ¹«±È¶¼ÊÇ2£¬Ôòa${\;}_{{b}_{2}}$+a${\;}_{{b}_{3}}$+a${\;}_{{b}_{4}}$=£¨¡¡¡¡£©
A£®24B£®25C£®26D£®27

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=cos£¨$\frac{a¦Ð}{3}$x£©£¬aΪÅ×ÖÀÒ»¿Å÷»×ÓËùµÃµÄµãÊý£¬Ôòº¯Êýf£¨x£©ÔÚ[0£¬4]ÉÏÁãµãµÄ¸öÊýСÓÚ5»ò´óÓÚ6µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{5}{6}$C£®$\frac{2}{5}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ºÐÖÐ×°ÓÐ12¸öƹÅÒÇò£¬ÆäÖÐ9¸öеģ¬3¸ö¾ÉµÄ£¬´ÓºÐÖÐÈÎÈ¡3¸öÀ´Óã¬ÓÃÍêºó×°»ØºÐÖУ¬´ËʱºÐÖоÉÇò¸öÊýXÊÇÒ»¸öËæ»ú±äÁ¿£¬ÇóXµÄ·Ö²¼ÁУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{lnx£¬x£¾0}\\{-ln£¨-x£©£¬x£¼0}\end{array}\right.$£¬Èôf£¨a£©£¾f£¨-a£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨-1£¬0£©¡È£¨1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸