精英家教网 > 高中数学 > 题目详情

(Ⅰ)讨论函数的单调性;
(Ⅱ)若,证明:时,成立
(Ⅰ)(Ⅱ)详见解析

试题分析:(Ⅰ) 利用导数分析单调性,注意分类讨论;(Ⅱ)利用导数分析单调性,进而求最值
试题解析:(Ⅰ)的定义域为
(1)当时,解得解得
所以函数上单调递增,在上单调递减;
(2)当时,恒成立,所以函数上单调递增;
(3)当时,解得解得
所以函数上单调递增,在上单调递减    (6分)
(Ⅱ)证明:不等式等价于
因为,所以
因此
,则
得:当
所以上单调递减,从而  即
上单调递减,得:
时,    (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为函数图象上一点,为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln-a+x(a>0).
(Ⅰ)若,求f(x)图像在x=1处的切线的方程;
(Ⅱ)若的极大值和极小值分别为m,n,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中m为常数).
(1) 试讨论在区间上的单调性;
(2) 令函数.当时,曲线上总存在相异两点,使得过点处的切线互相平行,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为函数的导函数.
(1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;
(2)若函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数的图象在处的切线斜率为,求实数的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数满足,则不等式的解集为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是函数的导数,则的值是(  )
A.B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若f(3)="3f" ′(x0),则x0=(   )
A.±1B.±2C.±D.2

查看答案和解析>>

同步练习册答案