精英家教网 > 高中数学 > 题目详情

定义在D上的函数f(x),如果满足:对于任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a·()x+()x

(1)当a=1时,求函数f(x)在(-∞,0)上的值域.并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;

(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

(3)试定义函数的下界,举一个下界为3的函数模型,并进行证明.

(1)当a=1时,f(x)=1+()x+()x=[()x]2

∵f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,

即f(x)在(-∞,0)的值域为(3,+∞),

故不存在常数M>0,使|f(x)|≤M成立,

∴函数f(x)在(-∞,0)上不是有界函数.

(2)由题意,|f(x)|≤3在[0,+∞)上恒成立.

-3≤f(x)≤3,-4-()x≤a·()x≤2-()x

∴-4·2x-()x≤a≤2·2x-()x

在[0,+∞)上恒成立,

∴[-4·2x-()x]max≤a≤[2·2x-()x]min.

设2x=t,h(t)=-4t-,p(t)=2t-

由x∈[0,+∞)得t≥1,设1≤t1<t2

h(t1)-h(t2)=>0,

p(t1)-p(t2)=<0,

所以h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,h(t)在[1,+∞)上的最大值为h(1)=-5,p(t)在[1,+∞)上的最小值为p(1)=1,所以实数a的取值范围为[-5,1].

(3)定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≥M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的下界

例如f(x)=3,有|f(x)|≥3;

证明:∵x∈R,|f(x)|=3≥3,

∴命题成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
已知函数f(x)=1+a•(
1
2
x+(
1
4
x;g(x)=
1-m•x2
1+m•x2

(Ⅰ)当a=1时,求函数f(x)值域并说明函数f(x)在(-∞,0)上是否为有界函数?
(Ⅱ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(Ⅲ)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2
(1)当a=-1时,求函数f(x)在(-∞,0)上的值域,判断函数f(x)在(-∞,0)上是否为有界函数,并说明理由;
(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
; g(x)=
1-m•x2
1+m•x2

(1)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(2)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2,使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数:①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在区间[1,+∞)上通道宽度可以为1的函数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案