精英家教网 > 高中数学 > 题目详情
如图,在边长为2的正方形内有一个“蝴蝶结”状不规则图形X,为了估计X的面积,在正方形中随机投掷n个点,若n个点中有m点落入X中,则X面积的估计值为
 
精英家教网
分析:根据落到蝴蝶结图形和正方形中的点的个数,得到概率,即得到两者的面积的比值,根据所给的正方形的边长,求出面积,根据比值得到要求的面积的估计值.
解答:解:∵由题意知在正方形中随机投掷n个点,若n个点中有m点落入X中,
∴蝴蝶结的面积:正方形的面积=m:n
∴蝴蝶结的面积=
m
n
×正方形的面积
=
m
n
× 22

=
4m
n

故答案为:
4m
n
点评:本题考查几何概型,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在边长为2 (单位:m)的正方形铁皮的四周切去四个全等的等腰三角形,再把它的四个角沿着虚线折起,做成一个正四棱锥的模型.设切去的等腰三角形的高为x m.
(1)求正四棱锥的体积V(x);
(2)当x为何值时,正四棱锥的体积V(x)取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•资阳模拟)如图,在边长为2的正六边形ABCDEF中,P是△CDE内(含边界)的动点,设向量
AP
=m
AB
+n
AF
(m,n为实数),则m+n的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在边长为2的正六边形ABCDEF中,动圆Q的半径为1,圆心在线段CD(含端点)上运动,P是圆Q上及内部的动点,设向量
AP
=m
AB
+n
AF
(m,n为实数),则m+n的取值范围是(  )
A、(1,2]
B、[5,6]
C、[2,5]
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正六边形ABCDEF中,O为其中心,分别写出:

(1)向量的起点、终点和模;

(2)与向量共线的向量;

(3)与向量相等的向量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为2 (单位:m)的正方形铁皮的四周切去四个全等的等腰三角形,再把它的四个角沿着虚线折起,做成一个正四棱锥的模型.设切去的等腰三角形的高为x m.
(1)求正四棱锥的体积V(x);
(2)当x为何值时,正四棱锥的体积V(x)取得最大值?

查看答案和解析>>

同步练习册答案