【题目】《乌鸦喝水》是《伊索寓言》中一个寓言故事。通过讲述一只乌鸦喝水的故事,告诉人们遇到困难要运用智慧、认真思考才能让问题迎刃而解的道理。如图2所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为3厘米,瓶底直径为9厘米,瓶口距瓶颈为
厘米,瓶颈到水位线距离和水位线到瓶底距离均为
厘米现将1颗石子投入瓶中,发现水位线上移
厘米,若只有当水位线到达瓶口时,乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是?(石子体积均视为一致)
圆台体积公式:
,其中,
为圆台高,
为圆台下底面半径,
为圆台上底面半径( )
![]()
![]()
A.2颗B.3颗C.4颗D.5颗
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,且
,椭圆经过点
.
(1)求椭圆的方程;
(2)直线
过椭圆右顶点
,交椭圆于另一点
,点
在直线
上,且
.若
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月1日,庆祝中华人民共和国成立70周年大会、阅兵式、群众游行在北京隆重举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580余套,是近几次阅兵中规模最大的一次.某机构统计了观看此次阅兵的年龄在30岁至80岁之间的100个观众,按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)求
的值及这100个人的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)用分层抽样的方法在年龄为
、
的人中抽取5人,再从抽取的5人中随机抽取2人接受采访,求接受采访的2人中年龄在
的恰有1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
分别为双曲线![]()
![]()
的左、右焦点,点P是以
为直径的圆与C在第一象限内的交点,若线段
的中点Q在C的渐近线上,则C的两条渐近线方程为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设各项均为正数的等比数列
中,
![]()
(1)求数列
的通项公式;
(2)若
,求证:
;
(3)是否存在正整数
,使得
对任意正整数
均成立?若存在,求出
的最大值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小姜同学有两个盒子
和
,最初盒子
有6枚硬币,盒子
是空的.在每一回合中,她可以将一枚硬币从
盒移到
盒,或者从
盒移走
枚硬币,其中
是
盒中当前的硬币数.当
盒空时她获胜.则小姜可以获胜的最少回合是( )
A.三回合B.四回合C.五回合D.六回合
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)
为曲线
上的动点,点
在线段
上,且满足
,求点
的轨迹
的直角坐标方程;
(2)设点
的极坐标为
,点
在曲线
上,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在菱形
中,![]()
沿对角线
将△
折起,使
之间的距离为
若
分别为线段
上的动点
![]()
(1)求线段
长度的最小值;
(2)当线段
长度最小时,求直线
与平面
所成角的正弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com