精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足Sn+an=2n+1.
(1)写出a1,a2,a3并推出的an表达式;
(2)用数学归纳法证明所得的结论.

分析 (1)由数列{an}满足Sn+an=2n+1,分别令n=1,2,3,即可得出.
(2)由(1)猜想:${a_n}=2-\frac{1}{2^n}$.利用数学归纳法证明即可得出.

解答 解:(1)当n=1时,S1+a1=2a1=3,
∴${a_1}=\frac{3}{2}$,
当n=2时,S2+a2=a1+a2+a2=5,
∴${a_2}=\frac{7}{4}$,
同样令n=3,则可求出${a_3}=\frac{15}{8}$,
∴${a_1}=\frac{3}{2}$,${a_2}=\frac{7}{4}$,${a_3}=\frac{15}{8}$,
猜测${a_n}=2-\frac{1}{2^n}$.
(2)证明:①由(1)已得当n=1时,命题成立;
②假设n=k时,命题成立,即${a_k}=2-\frac{1}{2^k}$,
当n=k+1时,a1+a2+…+ak+2ak+1=2(k+1)+1,
且a1+a2+…+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,
∴$2{a_{k+1}}=2+2-\frac{1}{2^k}$,即${a_{k+1}}=2-\frac{1}{{{2^{k+1}}}}$,
即当n=k+1时,命题成立.
根据①②得n∈N+,${a_n}=2-\frac{1}{2^n}$都成立.

点评 本题考查了数学归纳法、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设复数z=1-$\sqrt{3}$i(i是虚数单位),则$\frac{2}{z•\overline{z}}$+$\frac{i}{1-i}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.$\frac{1}{2}$iD.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{-lnx,x>1}\end{array}\right.$,若关于x的方程f(x)-ax=0恰有1个实数根,则实数a的取值范围是(-∞,-$\frac{1}{e}$)∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知实数a、b都是常数,且函数f(x)=$\frac{a|x-1|}{x+2}$+bex在点(0,f(0))处的切线方程是3x+4y-2=0,其中e=2.71828…是自然对数的底数.
(1)求f(x)的解析式;
(2)设g(x)=(x+2)f(x)-klnx,?x∈(0,+∞),总有g(x)≥0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过抛物线y2=6x的焦点F的直线l交抛物线于A,B两点,若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则线段AB的中点M到y轴的距离为(  )
A.5B.4C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.
(1)求BM的长;
(2)求二面角A-DM-B的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的偶函数f(x),其导函数为f′(x);当x≥0时,恒有$\frac{x}{2}$f′(x)+f(-x)≤0,若g(x)=x2f(x),则不等式g(x)<g(1-2x)的解集为(  )
A.($\frac{1}{3}$,1)B.(-∞,$\frac{1}{3}$)∪(1,+∞)C.($\frac{1}{3}$,+∞)D.(-∞,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程(x+y-3)$\sqrt{{y}^{2}-4x}$=0表示的曲线是(  )
A.两条射线B.抛物线和一条线段
C.抛物线和一条直线D.抛物线和两条射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F(1,0),直线l:x=-1,P为平面上的动点,过点P作l的垂线,垂足为点Q,且$\overrightarrow{QP}$•$\overrightarrow{QF}$=$\overrightarrow{FP}$•$\overrightarrow{FQ}$.
(1)求动点P的轨迹G的方程;
(2)点F关于原点的对称点为M,过F的直线与G交于A、B两点,且AB不垂直于x轴,直线AM交曲线G于C,直线BM交曲线C于D.
①证明直线AB与曲线CD的倾斜角互补;
②直线CD是否经过定点?若经过定点,求出这个定点,否则,说明理由.

查看答案和解析>>

同步练习册答案