精英家教网 > 高中数学 > 题目详情
4.方程(x+y-3)$\sqrt{{y}^{2}-4x}$=0表示的曲线是(  )
A.两条射线B.抛物线和一条线段
C.抛物线和一条直线D.抛物线和两条射线

分析 利用已知方程,可得x+y-3=0(y2-4x≥0)或y2=4x,从而可得方程表示的曲线.

解答 解:∵(x+y-3)$\sqrt{{y}^{2}-4x}$=0,
∴x+y-3=0(y2-4x≥0)或y2=4x,
∴x+y-3=0(x≤1或x≥9)或y2=4x,
∴方程(x+y-3)$\sqrt{{y}^{2}-4x}$=0表示的曲线是抛物线和两条射线.
故选D.

点评 本题考查曲线与方程,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3-3a2x+2a2+1(a≥0)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)讨论函数f(x)在区间(-2,3)内极值点的个数;
(Ⅲ)证明:当0≤x≤1时,f(x)+|1-a2|≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}满足Sn+an=2n+1.
(1)写出a1,a2,a3并推出的an表达式;
(2)用数学归纳法证明所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合M={x|y=ln$\frac{x-1}{x}$},N={y|y=x2+2x+2},则M=(-∞,0)∪(1,+∞),(∁RM)∩N={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面内两点A(0,-a),B(0,a)(a>0),有一动点P在平面内,且直线PA与直线PB的斜率分别为k1,k2,令k1•k2=m,其中m≠0.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)已知N点在圆x2+y2=a2上,设m∈(-1,0)时对应的曲线为C,设F1,F2是该曲线的两个焦点,试问是否存在点N,使△F1NF2的面积S=$\sqrt{-m}$•a2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.($\frac{\sqrt{x}}{2}$+$\frac{2}{\root{3}{x}}$)10的展开式中常数项等于840,有理项有2项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{2}-{y^2}=1$的渐近线方程是y=±$\frac{\sqrt{2}}{2}$x,离心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z1=3-bi,z2=1-2i,若$\frac{{z}_{1}}{{z}_{2}}$是纯虚数,则实数b的值为(  )
A.0B.$\frac{8}{15}$C.$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若x,y满足$\left\{\begin{array}{l}{x+y≥0}\\{x≥1}\\{x-y≥0}\end{array}\right.$,则下列不等式恒成立的是(  )
A.y≥0B.x≥2C.2x-y+1≥0D.x+2y+1≥0

查看答案和解析>>

同步练习册答案