精英家教网 > 高中数学 > 题目详情
9.($\frac{\sqrt{x}}{2}$+$\frac{2}{\root{3}{x}}$)10的展开式中常数项等于840,有理项有2项.

分析 利用通项公式即可得出.

解答 解:($\frac{\sqrt{x}}{2}$+$\frac{2}{\root{3}{x}}$)10的展开式中通项公式:Tr+1=${∁}_{10}^{r}$$(\frac{\sqrt{x}}{2})^{10-r}$$(\frac{2}{\root{3}{x}})^{r}$=22r-10${∁}_{10}^{r}$${x}^{5-\frac{5r}{6}}$.
令$5-\frac{5r}{6}$=0,解得r=6,可得常数项=${2}^{2}{∁}_{10}^{6}$=840.
令$5-\frac{5r}{6}$=0,1,…5,
解得r=6,$\frac{24}{5}$,$\frac{18}{5}$,$\frac{12}{5}$,$\frac{6}{5}$,0.
可得有理项:${2}^{2}{∁}_{10}^{6}$,2-10x5
故答案为:840,2.

点评 本题考查了二项式定理的通项公式、分类讨论方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.△ABC的内角A,B,C的对边分别是a,b,c,若a2=(b+c)2-4,△ABC的面积为$\sqrt{3}$,则A等于(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.
(1)求BM的长;
(2)求二面角A-DM-B的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.
(Ⅰ)求证:BD⊥平面APQ;
(Ⅱ)求直线PB与平面PDQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程(x+y-3)$\sqrt{{y}^{2}-4x}$=0表示的曲线是(  )
A.两条射线B.抛物线和一条线段
C.抛物线和一条直线D.抛物线和两条射线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)证明:$\frac{1}{S1}$+$\frac{1}{S2}$+…+$\frac{1}{Sn}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合M={x|y=ln(2-x)},N={x|x2-3x-4≤0},则M∩N=(  )
A.[-1,2)B.[-1,2]C.[-4,1]D.[-1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一个零点是$\frac{π}{3}$,函数y=f(x)图象的一条对称轴是x=-$\frac{π}{6}$,则ω取得最小值时,函数f(x)的单调区间是(  )
A.[3kπ-$\frac{π}{3}$,3kπ-$\frac{π}{6}$],k∈ZB.[3kπ-$\frac{5π}{3}$,3kπ-$\frac{π}{6}$],k∈Z
C.[2kπ-$\frac{2π}{3}$,2kπ-$\frac{π}{6}$],k∈ZD.[2kπ-$\frac{π}{3}$,2kπ-$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.△ABC的内角A,B,C所对的边分别是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

同步练习册答案