精英家教网 > 高中数学 > 题目详情
6.△ABC是边长为2的等边三角形,已知向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow{AB}=2\overrightarrow a$,$\overrightarrow{AC}=2\overrightarrow a+\overrightarrow b$,求$\overrightarrow a•\overrightarrow b$的值.

分析 由向量的数量积的定义可得$\overrightarrow{AB}$•$\overrightarrow{AC}$=2,再由向量的平方即为模的平方,计算即可得到所求值.

解答 解:△ABC是边长为2的等边三角形,$\overrightarrow{AB}=2\overrightarrow a$,
可得|$\overrightarrow{a}$|=1,$\overrightarrow{AB}$•$\overrightarrow{AC}$=2•2•cos60°=2,
又,$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\overrightarrow{a}$•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=4$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$=2,
可得$\overrightarrow a•\overrightarrow b$=1-2$\overrightarrow{a}$2=1-2=-1.

点评 本题考查向量的数量积的定义和性质,主要考查向量的平方即为模的平方,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.f(x)=x3-ax2-4x+1在(-∞,-2]和[2,+∞)上都是单调递增,则a的范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面是边长为2$\sqrt{3}$菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2$\sqrt{6}$,M,N分别为PB,PD的中点
(1)证明:MN∥平面ABCD;
(2)证明:BD⊥平面PAC;
(3)求三棱锥C-BDN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的焦点到其渐近线的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一正三棱台上底边长为3,下底边长为6,高为3,则此三棱台体积为(  )
A.$\frac{{63\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{{45\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.由圆x2+y2=9外一点P(5,12)引圆的割线交圆于A、B两点,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合M={-2,-1,0,1,2},N={x|x2<3},则M∩N等于(  )
A.B.{-1,1}C.{-2,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如表是某单位1-4月份水量(单位:百吨)的一组数据:由散点图可知,用水量y与月份x之间有较强的线性相关关系,其线性回归直线方程是$\hat y$=-0.7x+a,由此可预测该单位第5个月的用水量是1.75 百吨.
月份x1234
用水量y4.5432.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在菱形ABCD中,对角线AC=4,E为CD的中点,则$\overrightarrow{AE•AC}$=12.

查看答案和解析>>

同步练习册答案