精英家教网 > 高中数学 > 题目详情
1.已知一正三棱台上底边长为3,下底边长为6,高为3,则此三棱台体积为(  )
A.$\frac{{63\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{{45\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{4}$

分析 直接利用棱台的体积公式,即可得出结论.

解答 解:棱台的体积:$\frac{1}{3}×3×(\frac{\sqrt{3}}{4}×{3}^{2}+\frac{\sqrt{3}}{4}×{6}^{2}+\frac{\sqrt{3}}{4}×3×6)$=$\frac{63\sqrt{3}}{4}$.
故选:A.

点评 本题考查棱柱、棱锥、棱台的体积,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,已知a1=2,对于任意的p、q∈Z+,都有ap+aq=ap+q成立.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an2bn=1,设Sn为数列{bn}的前n项之和.求证:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:$y=x+\sqrt{6}$,圆O:x2+y2=5,椭圆E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{\sqrt{3}}}{3}$,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点$P({x_0},{y_0})({x_0}≠±\sqrt{2},{y_0}≠±\sqrt{3})$作两条直线与椭圆E分别只有唯一一个公共点,求证:这两直线斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,F1,F2是椭圆的两个焦点,则|F1F2|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有一智能机器人在平面上行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等,若机器人接触不到过点P(-1,0)且斜率为k的直线,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.△ABC是边长为2的等边三角形,已知向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow{AB}=2\overrightarrow a$,$\overrightarrow{AC}=2\overrightarrow a+\overrightarrow b$,求$\overrightarrow a•\overrightarrow b$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,平行六面体ABCD-A1B1C1D1中,AC与BD交于点M,设$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}$=$\overrightarrow c$,则$\overrightarrow{{B_1}M}$=(  )
A.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.工艺扇面是中国书画一种常见的表现形式,某班级想用布料制作一面如图所示的扇面.已知扇面展开的中心角为120°,外圆半径为50cm,内圆半径为20cm,则制作这样的一面扇面需要的布料为2198cm2(用数字作答,π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:x2-8x-20≤0,命题q:x2-2x+1-a2≥0(a>0),若¬p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

同步练习册答案