精英家教网 > 高中数学 > 题目详情
16.在数列{an}中,已知a1=2,对于任意的p、q∈Z+,都有ap+aq=ap+q成立.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an2bn=1,设Sn为数列{bn}的前n项之和.求证:Sn<$\frac{1}{2}$.

分析 (1)取p=n,q=1,则an+1=an+a1=an+2,可得an+1-an=2,由此能求出数列{an}的通项公式;
(2)求得bn=$\frac{1}{4{n}^{2}}$<$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和和不等式的性质,即可得证.

解答 解:(1)取p=n,q=1,则an+1=an+a1=an+2,
∴an+1-an=2(n∈N*),
∴{an}是公差为2,首项为2的等差数列,
则an=2n;
(2)由an2bn=1,可得bn=$\frac{1}{4{n}^{2}}$,
由4n2>4n2-1,可得bn<$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
即有Sn=b1+b2+…+bn<$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$,
故原不等式成立.

点评 本题考查数列通项公式的求法,考查了运用特值法确定数列为等差数列,考查不等式的证明,注意运用放缩法和裂项相消求和,以及不等式的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.由曲线y=$\sqrt{x}$+1和直线x-2y+2=0所围成图形的面积为a,则二项式(x2-$\frac{2}{x}$)3a的展开式中含x-1的项的系数为(  )
A.32B.-32C.48D.-48

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.下面一组数据是某生产车间30名工人某日加工零件的个数,请设计适当的然叶图表示这组数据,并由图出发说明一下这个车间此日的生产情况.
134112 117 126 128124 122 116 113 107 
116 132 127 128 126 121 120 118 108  110
 133130 124 116 117 123 122 120 112112

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:a1=1,an=2an-1+2n+1+1,n≥2,n∈N.
(1)求a2,a3
(2)证明{$\frac{{a}_{n}+1}{{2}^{n}}$}为等差数列,并求该数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=$\frac{lnx}{x}$,若方程f(x)-t=0在[$\frac{1}{e}$,e2]上有两个不同的解,则[$\frac{2}{{e}^{2}}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.f(x)=x3-ax2-4x+1在(-∞,-2]和[2,+∞)上都是单调递增,则a的范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x+x-1=5,则x2-x-2=±5$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,sinA=$\frac{3}{5}$,cosB=$\frac{1}{4}$,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知一正三棱台上底边长为3,下底边长为6,高为3,则此三棱台体积为(  )
A.$\frac{{63\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{{45\sqrt{3}}}{4}$D.$\frac{{15\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案