精英家教网 > 高中数学 > 题目详情

(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.
(1)化简:
(2)画出函数上的图像;
(3)证明:上是减函数.

(1)

(2)图像
(3)函数在区间上是减函数.

解析试题分析:(I)由于f(x)为奇函数,所以f(-x)=-f(x),所以可知,因而所求式子的结果为0.
(II)根据奇函数的图像关于原点对称,直接可画出在对称区间[-b,-a]上的图像.
(III)利用函数的单调性的定义及函数的奇偶性进行证明.
第一步:取值,第二步:作差变形,第三步根据差值符号得到结论.
(1)
……
(2)图像……
(3)任取,且          ……
.
又函数上是减函数,所以 . ……
因为是奇函数,所以,即
故函数在区间上是减函数.             …….
考点:函数单调性定义,函数的奇偶性,函数的图像.
点评:函数的奇偶性一要看定义域是否关于原点对称,二要看f(-x)与f(x)是相等还是互为相反数.奇函数的图像关于原点对称,偶函数的图像关于y轴对称.利用函数的单调性定义证明分三个步骤:一取值,二作差变形,三判断差值符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是定义在[-1,1]上的奇函数,当,且时有.
(1)判断函数的单调性,并给予证明;
(2)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)证明:上是增函数;(2)求上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 已知函数
(1)求函数y=的零点;
(2) 若y=的定义域为[3,9], 求的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,设AE=,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?  (10分) 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若在定义域内存在,使不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数定义域为,若对于任意的,都有,且时,有.
(1)求证: 为奇函数;
(2)求证: 上为单调递增函数;
(3)设,若<,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)定义运算:
(1)若已知,解关于的不等式
(2)若已知,对任意,都有,求实数的取值范围。

查看答案和解析>>

同步练习册答案