精英家教网 > 高中数学 > 题目详情

设函数
(Ⅰ)若在定义域内存在,使不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

(1)1;(2)

解析试题分析:(1)不等式转化为:能成立,求m最小值。可以转化成求函数在定义域内的最小值。(2)函数上有两个不同零点,所以上有两个不同的解,可以令,结合图形研究函数的性质即可。
解答过程:(Ⅰ)要使得不等式能成立,只需。  ………………1分
求导得:,…………………………………2分
∵函数的定义域为, ……………………………………3分
时,,∴函数在区间上是减函数;
时,,∴函数在区间(0,+∞)上是增函数。 …………5分
,  ∴。故实数的最小值为1。……………………6分(Ⅱ)由得:
…………………7分
由题设可得:方程在区间上恰有两个相异实根。
。∵,列表如下:




 



 

0

 

 
减函数
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

( 本题满分14分)已知函数对任意实数均有,其中常数k为负数,且在区间上有表达式
(1)求的值;
(2)写出上的表达式,并讨论函数上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.
(1)化简:
(2)画出函数上的图像;
(3)证明:上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)求证:函数上是单调递增函数;
(2)当时,求函数在上的最值;
(3)函数上恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知).
(1)判断函数的奇偶性,并证明;
(2)若,用单调性定义证明函数在区间上单调递减;
(3)是否存在实数,使得的定义域为时,值域为
,若存在,求出实数的取值范围;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数为奇函数;
(1)求以及m的值;
(2)在给出的直角坐标系中画出的图象;

(3)若函数有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,求函数= 的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)已知函数
(1)用分段函数的形式表示该函数;
(2)在坐标系中画出该函数的图像
(3)写出该函数的定义域,值域,奇偶性和单调区间(不要求证明)

查看答案和解析>>

同步练习册答案