精英家教网 > 高中数学 > 题目详情

(12分)已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.

(1)   
(2).(3)

解析试题分析:(1)由题意可知然后直接求导,利用导数大(小)于零求其单调增(减)区间即可.
(2)图象上任意一点为切点的切线的斜率
恒成立,其实质是恒成立.即
(3)解本小题的关键是的图象与的图象恰有四个不同交点,即有四个不同的根,
也就是有四个不同的根,然后再构造函数
利用导数研究G(x)的单调区间,极值,画出草图,从图像上观察直线y=m在什么范围内有四个不同的交点即可.
(1)    

.
 
(2)
  当
.
(3)若的图象与
的图象恰有四个不同交点,
有四个不同的根,亦即
有四个不同的根.

.
变化时的变化情况如下表:



-1
(-1,0)
0
(0,1)
1
(1,)

+
0
-
0
+
0
-

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知二次函数的最小值为1,且
(1)求的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)证明:上是增函数;(2)求上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数处取得极值2。
(Ⅰ)求函数的解析式;
(Ⅱ)当m满足什么条件时,在区间为增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设为非负实数,函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 已知函数
(1)求函数y=的零点;
(2) 若y=的定义域为[3,9], 求的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若在定义域内存在,使不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0)  ②函数上的最小值是3 
(Ⅰ)求的解析式;
 (Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案