(12分)已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.
(1)
(2).(3)
解析试题分析:(1)由题意可知然后直接求导,利用导数大(小)于零求其单调增(减)区间即可.
科目:高中数学
来源:
题型:解答题
(本小题满分14分)
科目:高中数学
来源:
题型:解答题
(本小题满分14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
(2)图象上任意一点为切点的切线的斜率
恒成立,其实质是恒成立.即
(3)解本小题的关键是的图象与的图象恰有四个不同交点,即有四个不同的根,
也就是有四个不同的根,然后再构造函数
利用导数研究G(x)的单调区间,极值,画出草图,从图像上观察直线y=m在什么范围内有四个不同的交点即可.
(1)
由.
(2)
当
.
(3)若的图象与
的图象恰有四个不同交点,
即有四个不同的根,亦即
有四个不同的根.
令,
则.
当变化时的变化情况如下表:-1 (-1,0) 0 (0,1) 1 (1,) + 0 - 0 + 0 -
已知二次函数的最小值为1,且.
(1)求的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0) ②函数在上的最小值是3
(Ⅰ)求的解析式;
(Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号