(本小题满分12分)
已知函数在点处的切线方程为.
(I)求,的值;
(II)对函数定义域内的任一个实数,恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:解答题
已知其中.(1)求函数的单调区间;(2)若函数在区间内恰有两个零点,求的取值范围;
(3)当时,设函数在区间上的最大值为最小值为,记,求函数在区间上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图像与轴有两个交点
(1)设两个交点的横坐标分别为试判断函数有没有最大值或最小值,并说明理由.
(2)若与在区间上都是减函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)对定义域分别是、的函数、,
规定:函数
已知函数,.
(1)求函数的解析式;
⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 已知是方程的两个不等实根,函数的定义域为.
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数,
若对任意的,总存在,使得成立,
求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 本题满分14分)已知函数对任意实数均有,其中常数k为负数,且在区间上有表达式
(1)求的值;
(2)写出在上的表达式,并讨论函数在上的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com