(本小题满分12分)
已知函数
在点
处的切线方程为
.
(I)求
,
的值;
(II)对函数
定义域内的任一个实数
,
恒成立,求实数
的取值范围.
科目:高中数学 来源: 题型:解答题
已知
其中
.(1)求函数
的单调区间;(2)若函数
在区间
内恰有两个零点,求
的取值范围;
(3)当
时,设函数
在区间
上的最大值为
最小值为
,记
,求函数
在区间
上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
的图像与
轴有两个交点
(1)设两个交点的横坐标分别为
试判断函数
有没有最大值或最小值,并说明理由.
(2)若![]()
与
在区间
上都是减函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)对定义域分别是
、
的函数
、
,
规定:函数![]()
已知函数
,![]()
.
(1)求函数
的解析式;
⑵对于实数
,函数
是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数
=
.
(1)判断函数
的奇偶性,并证明;
(2)求
的反函数
,并求使得函数
有零点的实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 已知
是方程
的两个不等实根,函数
的定义域为
.
⑴当
时,求函数
的值域;
⑵证明:函数
在其定义域
上是增函数;
⑶在(1)的条件下,设函数
,
若对任意的
,总存在
,使得
成立,
求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 本题满分14分)已知函数对任意实数
均有
,其中常数k为负数,且
在区间
上有表达式![]()
(1)求
的值;
(2)写出
在
上的表达式,并讨论函数
在
上的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数
,
,设
.
(1)求
的单调区间;
(2)若以
图象上任意一点
为切点的切线的斜率![]()
恒成立,求实数
的最小值.
(3)是否存在实数
,使得函数
的图象与
的图
象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com