精英家教网 > 高中数学 > 题目详情

(本小题满分14分)对定义域分别是的函数
规定:函数
已知函数
(1)求函数的解析式;
⑵对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.

(1)⑵当时,函数没有最小值;当时,函数的最小值为;当时,函数的最小值为

解析试题分析:(1)因为函数的定义域,函数的定义域,所以 ………………4分
(2)当时,函数单调递减,
所以函数上的最小值为.当时,
,函数.此时,函数存在最小值h(0)=0.
,因为
所以函数上单调递增.此时,函数不存在最小值.
,因为
所以函数上单调递减,在上单调递增.此时,函数的最小值为
因为
所以当时,,当时,
综上可知,当时,函数没有最小值;当时,函数的最小值为;当时,函数的最小值为.…………………14分
考点:分段函数及利用导数求函数最值
点评:本题第一小题考查的是分段函数,分段函数针对于不同的自变量的范围有不同的解析式,第二小题难在需要对a分情况讨论从而确定函数单调性求解其最值,学生不易找到分情况讨论的入手点,本题难度大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求的取值范围;
(III)是否存在,使在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)我们把同时满足下列两个性质的函数称为“和谐函数” :
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间,使得函数在区间上的值域为.
⑴已知幂函数的图像经过点,判断是否是和谐函数?
⑵判断函数是否是和谐函数?
⑶若函数是和谐函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数在区间                     上递增.当             时,                 .
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)证明:是奇函数;
(2)求的单调区间;
(3)写出函数图象的一个对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数定义域为,且.
设点是函数图像上的任意一点,过点分别作直线轴的垂线,垂足分别为

(1)写出的单调递减区间(不必证明);(4分)
(2)设点的横坐标,求点的坐标(用的代数式表示);(7分)
(3)设为坐标原点,求四边形面积的最小值.(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是定义在[-1,1]上的奇函数,当,且时有.
(1)判断函数的单调性,并给予证明;
(2)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=
(1)证明:上是增函数;(2)求上的值域。

查看答案和解析>>

同步练习册答案