精英家教网 > 高中数学 > 题目详情

(本题满分14分) 已知是方程的两个不等实根,函数的定义域为
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数
若对任意的,总存在,使得成立,
求实数的取值范围.

;⑵只需证>0.⑶

解析试题分析:(1)
……………4分
(2)
是方程的两个不等实根
即是方程(抛物线开口向下,两根之内的函数值必为正值)
∵当……………7分

>0.
∴函数在其定义域上是增函数……………9分
(3)由题意知:g(x)的值域是f(x)值域的子集。
由(1)知,f(x)的值域是

x


-m

m



 
+
0
-
0
+
 


递增
极大值g(-m)
递减
极小值g(m)
递增
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若对任意正实数x,不等式恒成立,求实数k的值;
(Ⅲ)求证:.(其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)证明:是奇函数;
(2)求的单调区间;
(3)写出函数图象的一个对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数在点处的切线方程为
(I)求的值;
(II)对函数定义域内的任一个实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数是奇函数.
(1)求实数的值;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知是定义在[-1,1]上的奇函数,当,且时有.
(1)判断函数的单调性,并给予证明;
(2)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数
(1) 求函数的极值;
(2)求证:当时,
(3)如果,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知二次函数的最小值为1,且
(1)求的解析式;
(2)若在区间上不单调,求实数的取值范围;
(3)在区间上,的图象恒在的图象上方,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 已知函数
(1)求函数y=的零点;
(2) 若y=的定义域为[3,9], 求的最大值与最小值。

查看答案和解析>>

同步练习册答案