精英家教网 > 高中数学 > 题目详情

(本题满分13分)已知函数
(1) 求函数的极值;
(2)求证:当时,
(3)如果,且,求证:

(1) 当时,取得极大值= ;
(2) ,则只需证当时,>0;
(3) 由⑵的结论知时,>0,∴
,∴
,∴

解析试题分析:⑴∵=,∴=            2分
=0,解得



1



0



极大值

∴当时,取得极大值=.            4分
⑵证明:,则
=             6分 
时,<0,>2,从而<0,
>0,是增函数.
            8分
⑶证明:∵内是增函数,在内是减函数.
∴当,且时,不可能在同一单调区间内.
                                11分
由⑵的结论知时,>0,∴
,∴
,∴           13分
考点:利用导数研究函数的极值;利用导数研究函数的单调性。
点评:此题是个难题.主要考查函数与导数的综合应用能力,具体涉及到用导数来研

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分8分)
某商店经营的消费品进价每件14元,月销售量(百件)与销售价格(元)的关系如下图,每月各种开支2000元.

(1)写出月销售量(百件)与销售价格(元)的函数关系;
(2)写出月利润(元)与销售价格(元)的函数关系;
(3)当商品价格每件为多少元时,月利润最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 已知是方程的两个不等实根,函数的定义域为
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数
若对任意的,总存在,使得成立,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的增函数,设
用定义证明:上的增函数;(6分)
证明:如果,则>0,(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 本题满分14分)已知函数对任意实数均有,其中常数k为负数,且在区间上有表达式
(1)求的值;
(2)写出上的表达式,并讨论函数上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设为奇函数,为常数.
(1)求的值;
(2)证明在区间内单调递增;
(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数

(1)作出函数的图象;
(2)写出函数的单调区间;
(3)判断函数的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)求证:函数上是单调递增函数;
(2)当时,求函数在上的最值;
(3)函数上恒有成立,求的取值范围.

查看答案和解析>>

同步练习册答案