精英家教网 > 高中数学 > 题目详情

(本小题满分10分)已知函数处取得极值2。
(Ⅰ)求函数的解析式;
(Ⅱ)当m满足什么条件时,在区间为增函数;

(Ⅰ) 。(Ⅱ)

解析试题分析:(1)因为根据函数的导数,可知f’(1)=0,f(1)=2,求解得到解析式。
(2) 利用函数递增,可知导数恒大于等于零,得到参数n的范围。
解:(Ⅰ)。。。。。。。。。。。。。。。。。2分
由已知

 。。。。。。。。。。。。。。。。。。。。。。。。。5分
(Ⅱ)


。。。。。。。。。。。。。。。。。。10分
考点:本题主要考查了导数在研究函数中的运用。
点评:解决该试题的关键是根据极值处的导数为零,可知参数的关系式,同时利用函数单调增,得到导函数恒大于等于零得到其取值范围。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设为奇函数,为常数.
(1)求的值;
(2)证明在区间内单调递增;
(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数

(1)作出函数的图象;
(2)写出函数的单调区间;
(3)判断函数的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)函数定义在R上的偶函数,当时, 
(1)写出单调区间;
(2)函数的值域;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求:
(1)函数的定义域。 (2)求使的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)求证:函数上是单调递增函数;
(2)当时,求函数在上的最值;
(3)函数上恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数是R上的偶函数,且当时,函数解析式为,
(Ⅰ)求的值;
(Ⅱ)求当时,函数的解析式。

查看答案和解析>>

同步练习册答案