(本小题满分12分)函数是R上的偶函数,且当时,函数解析式为,
(Ⅰ)求的值;
(Ⅱ)求当时,函数的解析式。
(1) ;(2) 。
解析试题分析:(1)因为根据已知函数为偶函数,则可知f(-x)=f(x),那么求解x=-2时的函数值,就等于x=2时 的函数值。
(2)在x<0时,得到-x大于零,进而代入已知关系式中得到f(-x),在结合奇偶性得到f(x)
解:(1)∵ 函数是R上的偶函数,∴ ………3分
(2)当,, ………7分
∵函数是R上的偶函数,∴,………11分
故当时,函数的解析式。 ………12分
考点:本试题主要考查了函数奇偶性的运算求解对称区间的解析式的问题,以及特殊点的函数值。
点评:解决该试题的关键是能利用偶函数关于y轴对称,那么在将所求解的区间的变量,转化为已知区间的变量,结合偶函数的定义得到结论。
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0,②f()=1,③对任意x,y( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知定义域为的单调函数是奇函数,当时,.
(I)求的值;
(II)求的解析式;
(III)若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0) ②函数在上的最小值是3
(Ⅰ)求的解析式;
(Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 12分)函数
(1)若,求的值域
(2)若在区间上有最大值14。求的值;
(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com