精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知定义域为的单调函数是奇函数,当时,.
(I)求的值;
(II)求的解析式;
(III)若对任意的,不等式恒成立,求实数的取值范围.

(1);(2);(3)

解析试题分析: (I)因为f(x)是奇函数,所以f(-1)=-f(1)从而问题得解.
(II)因为f(x)为R上的奇函数,所以f(0)=0,然后用-x代替中的x,-f(x)代替中的f(x)再两边同乘以-1可得x<0的解析式.从而可得f(x)在R上的解析式是一个分段函数.
(III) 因为f(x)为定义域为的单调函数,并且由于由于当x
>0时,f(x)是,从而可得f(x)在R上是减函数,所以由进一步可得,所以,然后再转化为一元二次不等式恒成立问题解决即可。
(1)定义域为的函数是奇函数 ,所以-------2分
(2)定义域为的函数是奇函数     ------------4分 
时,             
函数是奇函数            
                       ------------7分
综上所述      ----8分
(3)上单调
上单调递减                      -------10分

是奇函数      
,又是减函数  ------------12分
对任意恒成立
 得即为所求----------------14分
考点:函数的奇偶性,单调性,以及利用函数的单调性解不等式.
点评:奇函数的图像关于原点对称,因而在求对称区间上的解析式时,可用利用-x,-f(x)分别代替对称区间上解析式中的x,f(x)即可得到所求区间上的解析式.另外奇函数在对称区间上具有相同的单调性,当定义域中有0值时,f(0)=0这些都是奇函数常用的结论,勿必记住.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数

(1)作出函数的图象;
(2)写出函数的单调区间;
(3)判断函数的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)求证:函数上是单调递增函数;
(2)当时,求函数在上的最值;
(3)函数上恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数为奇函数;
(1)求以及m的值;
(2)在给出的直角坐标系中画出的图象;

(3)若函数有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面上的线段l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作
(1)已知点,线段,求
(2)设A(-1,0),B(1,0),求点集所表示图形的面积;
(3)若M(0,1),O(0,0),N(2,0),画出集合所表示的图形。(本题满分14分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,求函数= 的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数是R上的偶函数,且当时,函数解析式为,
(Ⅰ)求的值;
(Ⅱ)求当时,函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,对于任意的,都有,且当时,,若.
(1)求证:为奇函数;
(2)求证:上的减函数;
(3)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数
(Ⅰ)判断f(x)在上的单调性,并证明你的结论;
(Ⅱ)若集合A="{y" | y=f(x),},B=[0,1], 试判断A与B的关系;

查看答案和解析>>

同步练习册答案