已知函数的定义域为,对于任意的,都有,且当时,,若.
(1)求证:为奇函数;
(2)求证:是上的减函数;
(3)求函数在区间上的值域.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知定义域为的单调函数是奇函数,当时,.
(I)求的值;
(II)求的解析式;
(III)若对任意的,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0) ②函数在上的最小值是3
(Ⅰ)求的解析式;
(Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在正实数,使不等式对于一切的恒成立?若存在,指出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 12分)函数
(1)若,求的值域
(2)若在区间上有最大值14。求的值;
(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在实数集R上的函数y=满足条件:对于任意实数x、y都有f(x+y)=f(x)+f(y).(1)求f(0);(2) 求证:是奇函数;(3) 若时,,求在上的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com