精英家教网 > 高中数学 > 题目详情

(12分)已知函数
(1)当x∈[2,4]时.求该函数的值域;
(2)若恒成立,求m的取值范围

(1);(2)

解析试题分析:(1)利用换元法得到利用二次函数得到。
(2)因为,只要求解函数的最小值即可。
(1)
此时,,
(2)即
易知考点:本试题主要考查了对数函数的单调性和函数的最值的运用。
点评:解决该试题的关键是运用换元法得到形如二次函数的形式,结合二次函数来求解函数的最值,进而解决不等式的恒成立问题的运用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,求:
(1)函数的定义域。 (2)求使的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面上的线段l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到线段l的距离,记作
(1)已知点,线段,求
(2)设A(-1,0),B(1,0),求点集所表示图形的面积;
(3)若M(0,1),O(0,0),N(2,0),画出集合所表示的图形。(本题满分14分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数是R上的偶函数,且当时,函数解析式为,
(Ⅰ)求的值;
(Ⅱ)求当时,函数的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知幂函数为偶函数,且在区间上是单调递减函数,
⑴求函数的解析式;
⑵讨论函数的奇偶性。 (12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,对于任意的,都有,且当时,,若.
(1)求证:为奇函数;
(2)求证:上的减函数;
(3)求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
判断并证明函数上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数对任意实数满足
,且.
(1)求的值;
(2)求证:为奇函数且是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(1)求函数的定义域;
(2)求函数的值域;

查看答案和解析>>

同步练习册答案