精英家教网 > 高中数学 > 题目详情

已知函数,求:
(1)函数的定义域。 (2)求使的取值范围。

(1);(2)时,的解集为:.

解析试题分析:(1)由有:(3分)
所以的定义域为:        (4分)
(2)①时,(7分),
结合函数的定义域可知:时,的解集为:      (8分)
时,(11分)
结合函数的定义域可知:时,的解集为:(12分)
考点:本题考查对数函数的定义域、简单指数、对数不等式和分类讨论思想。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数是奇函数.
(1)求实数的值;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分8分)已知奇函数
(1)求实数m的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间[-1,-2]上单调递增,试确定的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)已知函数处取得极值2。
(Ⅰ)求函数的解析式;
(Ⅱ)当m满足什么条件时,在区间为增函数;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分) 已知函数
(1)求函数y=的零点;
(2) 若y=的定义域为[3,9], 求的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数y=的定义域为R,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0,②f()=1,③对任意x,y( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)当x∈[2,4]时.求该函数的值域;
(2)若恒成立,求m的取值范围

查看答案和解析>>

同步练习册答案