精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)对于一切实数x满足f(-x)=f(x),并且f(x)=0有三个实数根,这三个实数根和是
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:首先,根据函数为偶函数,结合其图象特征,它的图象关于y轴对称,可以得到答案.
解答: 解:∵f(-x)=f(x),
∴函数y=f(x)为偶函数,
∴函数y=f(x)图象关于y轴对称,
设a为方程f(x)=0的实根(a≠0),
即f(a)=0,
又∵f(-x)=f(x),
∴f(-a)=f(a)=0,
∴-a为方程f(x)=0的实根,
∵f(x)=0有三个实数根,
∴-a,a,0是方程的根,
∴这三个实数根和是0.
故答案为:0.
点评:本题重点考查了偶函数的图象与性质,偶函数的概念,函数的性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设n∈N*,且sinx+cosx=-1,则sinnx+cosnx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

倾斜角为锐角的直线l与抛物线y2=2x相交于A、B两点,O为坐标原点,若OA⊥OB且△OAB的面积为2
5
,则直线l方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数F(x)在(0,+∞)上是单调增函数,且F(1)=0,则不等式F(logax)<0(a>1)的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足:a1=1,(2n-1)an+1=2(2n+1)an,则a8=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
x2-ax+2a
在区间[2,3]上单调递减,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x),g(x)满足f(2+x)=g(8-x),则函数f(x)和g(x)的图象关于
 
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若
b
cosB
=
c
cosC
,则△ABC形状一定是(  )
A、锐角三角形
B、直角三角形
C、等腰三角形
D、任意三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈N|
6
x-1
∈Z},B={x|
x-13
x-8
≥2},则集合A∩B真子集的个数(  )
A、7B、4C、3D、1

查看答案和解析>>

同步练习册答案