精英家教网 > 高中数学 > 题目详情
已知函数 (1)若在区间上是增函数,求实数的取值范围; (2)若的极值点,求上的最大值;(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图象恰有3个交点?若存在,请求出实数的取值范围;若不存在,试说明理由。
(13分)
(1)                              (2)
(3)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

以正弦曲线y=sinx上一点P为切点的切线为直线l,则直线l的倾斜角的范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
定义在(0,+∞)上的函数,且处取极值。
(Ⅰ)确定函数的单调性。
(Ⅱ)证明:当时,恒有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
线的斜率是-5。
(Ⅰ)求实数b、c的值;
(Ⅱ)求f(x)在区间[-1,2]上的最大值;
(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知.
(1)求函数的单调区间;
(2)若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知函数).
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.
注:e为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)若曲线在点(2,)处与直线相切,求的值;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
已知二次函数 (,c为常数且1《c《4)的导函数的图象如图所示:

(1).求的值;
(2)记,求上的最大值

查看答案和解析>>

同步练习册答案