精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .
解:(1)

单调递增,单调递减,

(2)不妨设,要
只需证



,即

   
只需证

    单调递增。
        单调递增。

所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数
(1)求的导数
(2)求证:不等式上恒成立;
(3)求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数
若函数在(0,4)上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知是直线上三点,向量满足:
,且函数定义域内可导。
(1)求函数的解析式;
(2)若,证明:
(3)若不等式都恒成立,求实数
的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上的最大值为1,求a的取值范围(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

给出一个不等式(x∈R),经验证:当c=1,2,3时,不等式对一切实数x都成立。试问:当c取任何正数时,不等式对任何实数x是否都成立?若能成立,请给出证明;若不成立,请求出c的取值范围,使不等式对任何实数x都能成立。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 (1)若在区间上是增函数,求实数的取值范围; (2)若的极值点,求上的最大值;(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图象恰有3个交点?若存在,请求出实数的取值范围;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两地相距千米,骑车人与客车分别从两地出发,往返于两地之间.下图中,折线表示某骑车人离开地的距离与时间的函数关系.客车点从地出发,以千米/时的速度匀速行驶.(乘客上、下车停车时间忽略不计)

① 在阅读下图的基础上,直接回答:骑车人共休息几次?骑车人总共骑行多少千米?骑车人与客车总共相遇几次?
② 试问:骑车人何时与客车第二次相遇?(要求写出演算过程).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过曲线)上横坐标为1的点的切线方程为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案