精英家教网 > 高中数学 > 题目详情
函数上的最大值为1,求a的取值范围(   )
A.B.C.D.
D

专题:计算题.
分析:对f(x)求导,研究出其单调性,结合其单调性以及函数值为1的时刻,确定a的取值范围.
解答:解:∵f(x)=-x-2x+1,
∴f′(x)=-3x2-6x,
令f′(x)=-3x-6x=0,得x=0,x=-2,
列表讨论:
x
(-∞,-2)
-2
(-2,0)
0
(0,+∞)
f′(x)
-
0
+
0
-
f(x)

极小值

极大值

由f(x)=1,得-x-2x+1=1,解得x=0或x=-3.
当x>0时,f(x)<f(0)=1,当x<-3时,f(x)>f(-3)=1,
f(x)=-x-2x+1在[-2,+∞)上的最大值为1.
所以a的取值范围为[-3,0].
点评:本题考查利用导数求闭区间上函数最值的应用,不等式求解,考查数形结合的思想、转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,
(1) 设(其中的导函数),求的最大值;
(2) 证明: 当时,求证:  ;
(3) 设,当时,不等式恒成立,求的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知.
(1)求函数的单调区间;
(2)若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知函数
(I)求函数的单调区间;
(II)若,在(1,2)上为单调递
减函数。求实数a的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数的减区间是
⑴试求的值;
⑵求过点且与曲线相切的切线方程;
⑶过点是否存在与曲线相切的3条切线,若存在,求实数t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数
(Ⅰ)当时,求函数的最大值;
(Ⅱ)当时,曲线在点处的切线有且只有一个公共  
点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数分别在处取得极小值、极大值.平面上点的坐标分别为,该平面上动点满足,点是点关于直线的对称点,.求
(Ⅰ)求点的坐标;
(Ⅱ)求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 .
(1)讨论函数的单调性;
(2)当时,恒成立,求实数的取值范围;
(3)证明:.

查看答案和解析>>

同步练习册答案