精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知函数
(I)求函数的单调区间;
(II)若,在(1,2)上为单调递
减函数。求实数a的范围。
(1)函数的定义域为                           ————1分

 解得:                              ————4分
时,。此时函数单调递减。
时,。此时函数单调递增。         ————6分
(2)                           
由题意可知, 时,恒成立。            ————9分

由(1)可知,                     ————11分
可得
                                        ————13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数:
(1)证明:++2=0对定义域内的所有都成立;
(2)当的定义域为[+,+1]时,求证:的值域为[-3,-2];
(3)若,函数=x2+|(x-) | ,求的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 ()(为自然对数的底数)
(1)求的极值
(2)对于数列,   ()
①  证明:
② 考察关于正整数的方程是否有解,并说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数
若函数在(0,4)上为单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数.
(1)求的极值;
(2)若上恒成立,求的取值范围;
(3)已知,且,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数上的最大值为1,求a的取值范围(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+ln x-1.
(1)求函数f(x)在区间[1,e](e为自然对数的底)上的最大值和最小值;
(2)求证:在区间(1,+∞)上,函数f(x)的图象在函数g(x)=x3的图象的下方
(3)(理)求证:[f′(x)]n-f′(xn)≥2n-2(n∈N*)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数等于
A.6B.2C.0D.-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

同步练习册答案