精英家教网 > 高中数学 > 题目详情
(12分)已知函数
若函数在(0,4)上为单调函数,求的取值范围.
解:
要使在(0,4)上单调,
在(0,4)上恒成立。
在(0,4)上恒成立在(0,4)上恒成立.
必有
在(0,4)上恒成立
                             
综上,所求的取值范围为,或,或
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(Ⅰ)设函数,求的最小值;
(Ⅱ)设正数满足,证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
线的斜率是-5。
(Ⅰ)求实数b、c的值;
(Ⅱ)求f(x)在区间[-1,2]上的最大值;
(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知.
(1)求函数的单调区间;
(2)若对任意恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知函数).
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[﹣1,1],使得,试求a的取值范围.
注:e为自然对数的底数。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知函数
(I)求函数的单调区间;
(II)若,在(1,2)上为单调递
减函数。求实数a的范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数的图象为曲线, 函数的图象为直线.
(Ⅰ) 当时, 求的最大值;
(Ⅱ) 设直线与曲线的交点的横坐标分别为, 且,
求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数
(Ⅰ)当时,求函数的最大值;
(Ⅱ)当时,曲线在点处的切线有且只有一个公共  
点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数的取值范围是( ▲ )
A.[-2,2]B.[,]C.[,2]D.[,2]

查看答案和解析>>

同步练习册答案