精英家教网 > 高中数学 > 题目详情
5.已知R为实数集,集合A={x|x2-2x-3≥0},则∁RA=(  )
A.(-1,3)B.[-1,3]C.(-3,1)D.[-3,1]

分析 先求出集合A,再由补集定义能求出∁RA.

解答 解:∵R为实数集,集合A={x|x2-2x-3≥0}={x|x≥3或x≤-1},
∴∁RA={x|-1<x<3}=(-1,3).
故选:A.

点评 本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=3x+9x,则f(log32)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设a,b,c分别为△ABC三内角A,B,C的对边,面积$S=\frac{1}{2}{c^2}$.若$ab=\sqrt{2}$,则a2+b2+c2的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}2{e^x},x<0\\{log_2}({x+1})+2,x≥0\end{array}\right.(e$为自然对数的底数),则不等式f(x)>4的解集为(  )
A.(-ln2,0)∪(3,+∞)B.(-ln2,+∞)C.(3,+∞)D.(-ln2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在矩形ABCD中,AC=2,现将△ABC沿对角线AC折起,使点B到达点B'的位置,得到三棱锥B'-ACD,则三棱锥B'-ACD的外接球的表面积是(  )
A.πB.
C.D.与点B'的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.现行普通高中学生在高一升高二时面临着选文理科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:

根据这两幅图中的信息,下列哪个统计结论是不正确的(  )
A.样本中的女生数量多于男生数量
B.样本中有理科意愿的学生数量多于有文科意愿的学生数量
C.样本中的男生偏爱理科
D.样本中的女生偏爱文科

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若单位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$与向量$\overrightarrow{e_1}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230

(Ⅰ)把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,请在y=a+be-x和y=a+$\frac{b}{x}$间选取一个建立回归方程表述x,y二者之间的关系(a,b的值精确到0.1);
(Ⅱ)若保险公司在2015年交通事故中随机抽取100例,理赔60万元的有1例,理赔2万元的有19例,理赔0.2万元的有80例.
      利用你得到的回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:回归直线v=$\widehat{α}$+$\widehat{β}$u的斜率和截距的最小二乘法估计分别为:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
一些量的计算值:
$\overline{x}$   $\overline{y}$        $\overline{ω}$        $\overline{φ}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})^{2}$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})^{2}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})({y}_{i}-\overline{y})$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})({y}_{i}-\overline{y})$
18.341.7  0.235  0.062 0.723 0.112 36.3 14.1
表中:ωi=$\frac{1}{{x}_{i}}$,$\overline{ω}$=$\frac{1}{6}$$\sum_{i=1}^{6}{ω}_{i}$;φi=e${\;}^{-{x}_{i}}$,$\overline{φ}$=$\frac{1}{6}$$\sum_{i=1}^{6}{φ}_{i}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+$\frac{1}{x+1}$,x∈[0,1].
(1)用分析法证明:f(x)≥1-x+x2
(2)证明:f(x)>$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案