精英家教网 > 高中数学 > 题目详情
17.若单位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$与向量$\overrightarrow{e_1}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 可知$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1,<\overrightarrow{{e}_{1}},\overrightarrow{{e}_{2}}>=\frac{π}{3}$,这样进行数量积的运算即可求出$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})•\overrightarrow{{e}_{1}}=0$,这样即可得出向量$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$与向量$\overrightarrow{{e}_{1}}$的夹角.

解答 解:$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})•\overrightarrow{{e}_{1}}={\overrightarrow{{e}_{1}}}^{2}-2\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=$1-2×\frac{1}{2}=0$;
∴$(\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}})⊥\overrightarrow{{e}_{1}}$;
∴向量$\overrightarrow{{e}_{1}}-2\overrightarrow{{e}_{2}}$与$\overrightarrow{{e}_{1}}$的夹角为$\frac{π}{2}$.
故选A.

点评 考查单位向量的概念,向量数量积的运算及计算公式,向量夹角的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}的首项为a1(a1≠0),公差为d,且不等式a1x2-3x+2<0的解集为(1,d)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn-an=$\frac{1}{{n}^{2}+n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,底面ABCD为平行四边形,AB=3,AD=2$\sqrt{2}$,∠ABC=45°,P点在底面ABCD内的射影E在线段AB上,且PE=2,BE=2EA,F为AD的中点,M在线段CD上,且CM=λCD.
(Ⅰ)当λ=$\frac{2}{3}$时,证明:平面PFM⊥平面PAB;
(Ⅱ)当平面PAM与平面ABCD所成的二面角的正弦值为$\frac{{2\sqrt{5}}}{5}$时,求四棱锥P-ABCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知R为实数集,集合A={x|x2-2x-3≥0},则∁RA=(  )
A.(-1,3)B.[-1,3]C.(-3,1)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为A、B、C三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
工种类别ABC
赔付频率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,矩形ABCD中,AB=4,AD=2,E在DC边上,且DE=1,将△ADE沿AE折到△AD'E的位置,使得平面AD'E⊥平面ABCE.
(Ⅰ)求证:AE⊥BD';
(Ⅱ)求三棱锥A-BCD'的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.我国古代数学名著《九章算术》第三章“衰分”介绍比例分配:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别得100,60,36,21.6个单位,递减的比例是40%,今共有粮食m(m>0)石,按甲、乙、丙、丁的顺序进行“衰分”,已知丁分得2石,乙、丙所得之和为40石,则衰分比与m的值分别是(  )
A.75%,170B.75%,340C.25%,170D.25%,340

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230
把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,建立了两个不同的回归方程y(1)=29.9+50.2×$\frac{1}{x}$和y(2)=33.9+125.9e-x表述x,y二者之间的关系.
(Ⅰ)计算R2的值,判断这两个回归方程中哪个拟合效果更好?并解释更好的这个拟合所对R2的意义;
(Ⅱ)若保险公司在每次交通事故中理赔60万元的概率为0.01,理赔2万元的概率为0.19,理赔0.2万元的概率为0.8,利用你得到的拟合效果更好的这一个回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:对回归直线y=$\widehat{α}$+$\widehat{β}$x,有R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
一些量的计算值:
    $\overline{y}$       $\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(1)})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(2)})^{2}$
 41.7        1821 0.875 48.4
表中:${\widehat{{y}_{i}}}^{(1)}$=29.9+50.2×$\frac{1}{{x}_{i}}$,${\widehat{{y}_{i}}}^{(2)}$=33.9+125.9e${\;}^{-{x}_{i}}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若z=$\frac{{z}_{1}•{z}_{2}}{{z}_{1}+{z}_{2}}$,求z.

查看答案和解析>>

同步练习册答案