精英家教网 > 高中数学 > 题目详情
7.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若z=$\frac{{z}_{1}•{z}_{2}}{{z}_{1}+{z}_{2}}$,求z.

分析 直接利用复数代数形式的乘法运算化简得答案.

解答 解:(1)z1=1-i,z2=2+2i则z1•z2=(1-i)(2+2i)=4,
(2)z1+z2=1-i+2+2i=3+i,
∴z=$\frac{{z}_{1}•{z}_{2}}{{z}_{1}+{z}_{2}}$=$\frac{4}{3+i}$=$\frac{4(3-i)}{(3+i)(3-i)}$=$\frac{6-2i}{5}$

点评 本题考查了复数代数形式的乘法运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若单位向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,则向量$\overrightarrow{e_1}-2\overrightarrow{e_2}$与向量$\overrightarrow{e_1}$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠∅,则r的取值范围为(  )
A.$[{\frac{{\sqrt{2}}}{2},3}]$B.$[{1,\sqrt{10}}]$C.$[{\frac{{\sqrt{2}}}{2},\sqrt{10}}]$D.$[{1,\frac{{\sqrt{10}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+$\frac{1}{x+1}$,x∈[0,1].
(1)用分析法证明:f(x)≥1-x+x2
(2)证明:f(x)>$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=3+4i,则|z|等于(  )
A.25B.12C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过双曲线x2-y2=1焦点的直线垂直于x轴,交双曲线于A、B两点,则|AB|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a,b,c分别为角A,B,C所对的边,若b=$\sqrt{2}$,a=2,B=$\frac{π}{4}$,则c=(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作(其中元件1,2,3正常工作的概率都为$\frac{1}{2}$),设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为(  )
A.$\frac{3}{4}$B.$\frac{1}{4}$C.$\frac{5}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,B=45°,C=60°,c=2,则b=(  )
A.$\frac{{2\sqrt{6}}}{3}$B.$\frac{{3\sqrt{6}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案