精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=x3+$\frac{1}{x+1}$,x∈[0,1].
(1)用分析法证明:f(x)≥1-x+x2
(2)证明:f(x)>$\frac{3}{4}$.

分析 (1)利用分析法的证明步骤,即可得出结论.
(2)利用配方法,结合(1),即可得出结论.

解答 证明:(1)∵x∈[0,1],∴x+1∈[1,2].
要证明:f(x)≥1-x+x2
只要证明:x3(x+1)+1≥(x+1)(1-x+x2),
只要证明:x4≥0,
显然成立,
∴f(x)≥1-x+x2
(2)∵1-x+x2=(x-$\frac{1}{2}$)2+$\frac{3}{4}$≥$\frac{3}{4}$,当且仅当x=$\frac{1}{2}$时取等号,
∵f($\frac{1}{2}$)=$\frac{19}{24}$>$\frac{3}{4}$,f(x)≥1-x+x2
∴f(x)>$\frac{3}{4}$.

点评 本题主要考查用分析法证明不等式,把证明不等式转化为寻找使不等式成立的充分条件,直到使不等式成立的充分条件显然已经具备为止.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知R为实数集,集合A={x|x2-2x-3≥0},则∁RA=(  )
A.(-1,3)B.[-1,3]C.(-3,1)D.[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230
把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,建立了两个不同的回归方程y(1)=29.9+50.2×$\frac{1}{x}$和y(2)=33.9+125.9e-x表述x,y二者之间的关系.
(Ⅰ)计算R2的值,判断这两个回归方程中哪个拟合效果更好?并解释更好的这个拟合所对R2的意义;
(Ⅱ)若保险公司在每次交通事故中理赔60万元的概率为0.01,理赔2万元的概率为0.19,理赔0.2万元的概率为0.8,利用你得到的拟合效果更好的这一个回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:对回归直线y=$\widehat{α}$+$\widehat{β}$x,有R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
一些量的计算值:
    $\overline{y}$       $\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(1)})^{2}$ $\sum_{i=1}^{6}({y}_{i}-{\widehat{{y}_{i}}}^{(2)})^{2}$
 41.7        1821 0.875 48.4
表中:${\widehat{{y}_{i}}}^{(1)}$=29.9+50.2×$\frac{1}{{x}_{i}}$,${\widehat{{y}_{i}}}^{(2)}$=33.9+125.9e${\;}^{-{x}_{i}}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=AC=$\sqrt{3}$,∠BAC=120°,D为棱BC上一个动点,设直线PD与平面ABC所成的角θ,则θ不大于45°的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f0(x)=sinx+cosx,f1(x)=f′0(x),f2(x)=f′1(x),…fn+1(x)=f′n(x),n∈N,那么f2017=(  )
A.cosx-sinxB.sinx-cosxC.sinx+cosxD.-sinx-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在1000个有机会中奖的号码(编号为000~999)中,按照随机抽取的方法确定后两位数为88的号码为中奖号码,该抽样运用的抽样方法是(  )
A.简单随机抽样B.系统抽样C.分层抽样D.抽签法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若z=$\frac{{z}_{1}•{z}_{2}}{{z}_{1}+{z}_{2}}$,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了解城市居民的健康状况,某调查机构从一社区的120名年轻人,80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n=(  )
A.26B.24C.20D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,a2=0,an+2=an+1-an(n≥1),则a2017=1.

查看答案和解析>>

同步练习册答案