精英家教网 > 高中数学 > 题目详情
3.在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=AC=$\sqrt{3}$,∠BAC=120°,D为棱BC上一个动点,设直线PD与平面ABC所成的角θ,则θ不大于45°的概率为$\frac{3}{4}$.

分析 由题意,直线PD与平面ABC所成的角θ=45°,AD=1,∠BAD=90°,以角度为测度,即可求出θ不大于45°的概率.

解答 解:由题意,直线PD与平面ABC所成的角θ=45°,AD=1,∠BAD=90°,
∴θ不大于45°的概率为$\frac{90}{120}$=$\frac{3}{4}$,
故答案为$\frac{3}{4}$.

点评 本题考查概率的计算,考查几何概型,正确求角度是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}2{e^x},x<0\\{log_2}({x+1})+2,x≥0\end{array}\right.(e$为自然对数的底数),则不等式f(x)>4的解集为(  )
A.(-ln2,0)∪(3,+∞)B.(-ln2,+∞)C.(3,+∞)D.(-ln2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.经统计,2015年,某公路在部分界桩附近发生的交通事故次数如下表:
界桩公里数  100110051010102010251049
交通事故数  804035333230

(Ⅰ)把界桩公里数1001记为x=1,公里数1005记为x=5,…,数据绘成的散点图如图所示,以x为解释变量、交通事故数y为预报变量,请在y=a+be-x和y=a+$\frac{b}{x}$间选取一个建立回归方程表述x,y二者之间的关系(a,b的值精确到0.1);
(Ⅱ)若保险公司在2015年交通事故中随机抽取100例,理赔60万元的有1例,理赔2万元的有19例,理赔0.2万元的有80例.
      利用你得到的回归方程,试预报这一年在界桩1040公里附近处发生的交通事故的理赔费(理赔费精确到0.1万元).
附:回归直线v=$\widehat{α}$+$\widehat{β}$u的斜率和截距的最小二乘法估计分别为:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
一些量的计算值:
$\overline{x}$   $\overline{y}$        $\overline{ω}$        $\overline{φ}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})^{2}$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})^{2}$ $\sum_{i=1}^{6}({ω}_{i}-\overline{ω})({y}_{i}-\overline{y})$ $\sum_{i=1}^{6}({φ}_{i}-\overline{φ})({y}_{i}-\overline{y})$
18.341.7  0.235  0.062 0.723 0.112 36.3 14.1
表中:ωi=$\frac{1}{{x}_{i}}$,$\overline{ω}$=$\frac{1}{6}$$\sum_{i=1}^{6}{ω}_{i}$;φi=e${\;}^{-{x}_{i}}$,$\overline{φ}$=$\frac{1}{6}$$\sum_{i=1}^{6}{φ}_{i}$,$\frac{1}{40}$=0.025,e-40≈0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在(2x+1)(x-1)5的展开式中含x4项的系数是15.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合M={(x,y)|x+y≤1,y≤x,y≥-1},N={(x,y)|(x-2)2+y2=r2,r>0},若M∩N≠∅,则r的取值范围为(  )
A.$[{\frac{{\sqrt{2}}}{2},3}]$B.$[{1,\sqrt{10}}]$C.$[{\frac{{\sqrt{2}}}{2},\sqrt{10}}]$D.$[{1,\frac{{\sqrt{10}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.高考来临之际,食堂的伙食进行了全面升级.某日5名同学去食堂就餐,有米饭,花卷,包子和面条四种主食,每种主食均至少有一名同学选择且每人只能选择其中一种.花卷数量不足仅够一人食用,则不同的食物搭配方案种数为(  )
A.132B.180C.240D.600

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+$\frac{1}{x+1}$,x∈[0,1].
(1)用分析法证明:f(x)≥1-x+x2
(2)证明:f(x)>$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.过双曲线x2-y2=1焦点的直线垂直于x轴,交双曲线于A、B两点,则|AB|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,a7a11=6,a4+a14=5,则该数列公差d等于(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$或$-\frac{1}{2}$C.-$\frac{1}{4}$D.$\frac{1}{4}$或-$\frac{1}{4}$

查看答案和解析>>

同步练习册答案