14£®¾­Í³¼Æ£¬2015Ä꣬ij¹«Â·ÔÚ²¿·Ö½ç×®¸½½ü·¢ÉúµÄ½»Í¨Ê¹ʴÎÊýÈçÏÂ±í£º
½ç×®¹«ÀïÊý  100110051010102010251049
½»Í¨Ê¹ÊÊý  804035333230

£¨¢ñ£©°Ñ½ç×®¹«ÀïÊý1001¼ÇΪx=1£¬¹«ÀïÊý1005¼ÇΪx=5£¬¡­£¬Êý¾Ý»æ³ÉµÄÉ¢µãͼÈçͼËùʾ£¬ÒÔxΪ½âÊͱäÁ¿¡¢½»Í¨Ê¹ÊÊýyΪԤ±¨±äÁ¿£¬ÇëÔÚy=a+be-xºÍy=a+$\frac{b}{x}$¼äѡȡһ¸ö½¨Á¢»Ø¹é·½³Ì±íÊöx£¬y¶þÕßÖ®¼äµÄ¹ØÏµ£¨a£¬bµÄÖµ¾«È·µ½0.1£©£»
£¨¢ò£©Èô±£ÏÕ¹«Ë¾ÔÚ2015Ä꽻ͨʹÊÖÐËæ»ú³éÈ¡100Àý£¬ÀíÅâ60ÍòÔªµÄÓÐ1Àý£¬ÀíÅâ2ÍòÔªµÄÓÐ19Àý£¬ÀíÅâ0.2ÍòÔªµÄÓÐ80Àý£®
      ÀûÓÃÄãµÃµ½µÄ»Ø¹é·½³Ì£¬ÊÔÔ¤±¨ÕâÒ»ÄêÔÚ½ç×®1040¹«À︽½ü´¦·¢ÉúµÄ½»Í¨Ê¹ʵÄÀíÅâ·Ñ£¨ÀíÅâ·Ñ¾«È·µ½0.1ÍòÔª£©£®
¸½£º»Ø¹éÖ±Ïßv=$\widehat{¦Á}$+$\widehat{¦Â}$uµÄбÂʺͽؾàµÄ×îС¶þ³Ë·¨¹À¼Æ·Ö±ðΪ£º
$\widehat{¦Â}$=$\frac{\sum_{i=1}^{n}£¨{u}_{i}-\overline{u}£©£¨{v}_{i}-\overline{v}£©}{\sum_{i=1}^{n}£¨{u}_{i}-\overline{u}£©^{2}}$£¬$\widehat{¦Á}$=$\overline{v}$-$\widehat{¦Â}$$\overline{u}$£®
һЩÁ¿µÄ¼ÆËãÖµ£º
$\overline{x}$   $\overline{y}$        $\overline{¦Ø}$        $\overline{¦Õ}$ $\sum_{i=1}^{6}£¨{¦Ø}_{i}-\overline{¦Ø}£©^{2}$ $\sum_{i=1}^{6}£¨{¦Õ}_{i}-\overline{¦Õ}£©^{2}$ $\sum_{i=1}^{6}£¨{¦Ø}_{i}-\overline{¦Ø}£©£¨{y}_{i}-\overline{y}£©$ $\sum_{i=1}^{6}£¨{¦Õ}_{i}-\overline{¦Õ}£©£¨{y}_{i}-\overline{y}£©$
18.341.7  0.235  0.062 0.723 0.112 36.3 14.1
±íÖУº¦Øi=$\frac{1}{{x}_{i}}$£¬$\overline{¦Ø}$=$\frac{1}{6}$$\sum_{i=1}^{6}{¦Ø}_{i}$£»¦Õi=e${\;}^{-{x}_{i}}$£¬$\overline{¦Õ}$=$\frac{1}{6}$$\sum_{i=1}^{6}{¦Õ}_{i}$£¬$\frac{1}{40}$=0.025£¬e-40¡Ö0£®

·ÖÎö £¨¢ñ£©È¡y=a+$\frac{b}{x}$£¬½¨Á¢»Ø¹é·½³Ì£¬¼´y=a+b¦Ø£¬Çó³ö»Ø¹éϵÊý£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ò£©½ç×®1040¹«ÀïÈ¡x=40£¬ÓÉy£¨1£©=29.9+50.2¡Á$\frac{1}{40}$¡Ö31.16£¬Ã¿´Î½»Í¨Ê¹ʵÄÀíÅâ·Ñ=60¡Á0.01+2¡Á0.19+0.2¡Á0.8=1£¬14ÍòÔª£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨¢ñ£©È¡y=a+$\frac{b}{x}$£¬½¨Á¢»Ø¹é·½³Ì£¬¼´y=a+b¦Ø£¬b=$\frac{36.3}{0.723}$¡Ö50.2£¬
¡àa=41.7-50.2¡Á0.235¡Ö29.9£¬
¡ày=29.9+50.2¦Ø£¬¼´y=29.9+50.2¡Á$\frac{1}{x}$£»
£¨¢ò£©½ç×®1040¹«ÀïÈ¡x=40£¬ÓÉy£¨1£©=29.9+50.2¡Á$\frac{1}{40}$¡Ö31.16£¬Ã¿´Î½»Í¨Ê¹ʵÄÀíÅâ·Ñ=60¡Á0.01+2¡Á0.19+0.2¡Á0.8=1£¬14ÍòÔª£¬
¡àÔ¤±¨ÕâÒ»ÄêÔÚ½ç×®1040¹«À︽½ü´¦·¢ÉúµÄ½»Í¨Ê¹ʵÄÀíÅâ·ÑΪ31.16¡Á1.14¡Ö35.5ÍòÔª£®

µãÆÀ ±¾Ì⿼²é»Ø¹é·½³Ì£¬¿¼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬¶¯Ô²MÓëÔ²${O_1}£º{x^2}+2x+{y^2}=0$ÍâÇУ¬Í¬Ê±ÓëÔ²${O_2}£º{x^2}+{y^2}-2x-24=0$ÄÚÇУ®
£¨1£©Çó¶¯Ô²Ô²ÐÄMµÄ¹ì¼£·½³Ì£»
£¨2£©É趯ԲԲÐÄMµÄ¹ì¼£ÎªÇúÏßC£¬ÉèA£¬PÊÇÇúÏßCÉÏÁ½µã£¬µãA¹ØÓÚxÖáµÄ¶Ô³ÆµãΪB£¨ÒìÓÚµãP£©£¬ÈôÖ±ÏßAP£¬BP·Ö±ð½»xÖáÓÚµãS£¬T£¬Ö¤Ã÷£º|OS|•|OT|Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªRΪʵÊý¼¯£¬¼¯ºÏA={x|x2-2x-3¡Ý0}£¬Ôò∁RA=£¨¡¡¡¡£©
A£®£¨-1£¬3£©B£®[-1£¬3]C£®£¨-3£¬1£©D£®[-3£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=4£¬AD=2£¬EÔÚDC±ßÉÏ£¬ÇÒDE=1£¬½«¡÷ADEÑØAEÕÛµ½¡÷AD'EµÄλÖã¬Ê¹µÃÆ½ÃæAD'E¡ÍÆ½ÃæABCE£®
£¨¢ñ£©ÇóÖ¤£ºAE¡ÍBD'£»
£¨¢ò£©ÇóÈýÀâ×¶A-BCD'µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÎÒ¹ú¹Å´úÊýѧÃûÖø¡¶¾ÅÕÂËãÊõ¡·µÚÈýÕ¡°Ë¥·Ö¡±½éÉܱÈÀý·ÖÅ䣺¡°Ë¥·Ö¡±Êǰ´±ÈÀýµÝ¼õ·ÖÅäµÄÒâ˼£¬Í¨³£³ÆµÝ¼õµÄ±ÈÀý£¨¼´°Ù·Ö±È£©Îª¡°Ë¥·Ö±È¡±£®È磺¼×¡¢ÒÒ¡¢±û¡¢¶¡·Ö±ðµÃ100£¬60£¬36£¬21.6¸öµ¥Î»£¬µÝ¼õµÄ±ÈÀýÊÇ40%£¬½ñ¹²ÓÐÁ¸Ê³m£¨m£¾0£©Ê¯£¬°´¼×¡¢ÒÒ¡¢±û¡¢¶¡µÄ˳Ðò½øÐС°Ë¥·Ö¡±£¬ÒÑÖª¶¡·ÖµÃ2ʯ£¬ÒÒ¡¢±ûËùµÃÖ®ºÍΪ40ʯ£¬ÔòË¥·Ö±ÈÓëmµÄÖµ·Ö±ðÊÇ£¨¡¡¡¡£©
A£®75%£¬170B£®75%£¬340C£®25%£¬170D£®25%£¬340

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®$\frac{£¨x+y+1£©^{5}}{xy}$Õ¹¿ªÊ½Öеij£ÊýÏîΪ£¨¡¡¡¡£©
A£®20B£®10C£®5D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¾­Í³¼Æ£¬2015Ä꣬ij¹«Â·ÔÚ²¿·Ö½ç×®¸½½ü·¢ÉúµÄ½»Í¨Ê¹ʴÎÊýÈçÏÂ±í£º
½ç×®¹«ÀïÊý  100110051010102010251049
½»Í¨Ê¹ÊÊý  804035333230
°Ñ½ç×®¹«ÀïÊý1001¼ÇΪx=1£¬¹«ÀïÊý1005¼ÇΪx=5£¬¡­£¬Êý¾Ý»æ³ÉµÄÉ¢µãͼÈçͼËùʾ£¬ÒÔxΪ½âÊͱäÁ¿¡¢½»Í¨Ê¹ÊÊýyΪԤ±¨±äÁ¿£¬½¨Á¢ÁËÁ½¸ö²»Í¬µÄ»Ø¹é·½³Ìy£¨1£©=29.9+50.2¡Á$\frac{1}{x}$ºÍy£¨2£©=33.9+125.9e-x±íÊöx£¬y¶þÕßÖ®¼äµÄ¹ØÏµ£®
£¨¢ñ£©¼ÆËãR2µÄÖµ£¬ÅжÏÕâÁ½¸ö»Ø¹é·½³ÌÖÐÄĸöÄâºÏЧ¹û¸üºÃ£¿²¢½âÊ͸üºÃµÄÕâ¸öÄâºÏËù¶ÔR2µÄÒâÒ壻
£¨¢ò£©Èô±£ÏÕ¹«Ë¾ÔÚÿ´Î½»Í¨Ê¹ÊÖÐÀíÅâ60ÍòÔªµÄ¸ÅÂÊΪ0.01£¬ÀíÅâ2ÍòÔªµÄ¸ÅÂÊΪ0.19£¬ÀíÅâ0.2ÍòÔªµÄ¸ÅÂÊΪ0.8£¬ÀûÓÃÄãµÃµ½µÄÄâºÏЧ¹û¸üºÃµÄÕâÒ»¸ö»Ø¹é·½³Ì£¬ÊÔÔ¤±¨ÕâÒ»ÄêÔÚ½ç×®1040¹«À︽½ü´¦·¢ÉúµÄ½»Í¨Ê¹ʵÄÀíÅâ·Ñ£¨ÀíÅâ·Ñ¾«È·µ½0.1ÍòÔª£©£®
¸½£º¶Ô»Ø¹éÖ±Ïßy=$\widehat{¦Á}$+$\widehat{¦Â}$x£¬ÓÐR2=1-$\frac{\sum_{i=1}^{n}£¨{y}_{i}-\widehat{{y}_{i}}£©^{2}}{\sum_{i=1}^{n}£¨{y}_{i}-\overline{y}£©^{2}}$£®
һЩÁ¿µÄ¼ÆËãÖµ£º
    $\overline{y}$       $\sum_{i=1}^{6}£¨{y}_{i}-\overline{y}£©^{2}$ $\sum_{i=1}^{6}£¨{y}_{i}-{\widehat{{y}_{i}}}^{£¨1£©}£©^{2}$ $\sum_{i=1}^{6}£¨{y}_{i}-{\widehat{{y}_{i}}}^{£¨2£©}£©^{2}$
 41.7        1821 0.875 48.4
±íÖУº${\widehat{{y}_{i}}}^{£¨1£©}$=29.9+50.2¡Á$\frac{1}{{x}_{i}}$£¬${\widehat{{y}_{i}}}^{£¨2£©}$=33.9+125.9e${\;}^{-{x}_{i}}$£¬$\frac{1}{40}$=0.025£¬e-40¡Ö0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÈýÀâ×¶P-ABCÖУ¬PA¡ÍÆ½ÃæABC£¬PA=1£¬AB=AC=$\sqrt{3}$£¬¡ÏBAC=120¡ã£¬DΪÀâBCÉÏÒ»¸ö¶¯µã£¬ÉèÖ±ÏßPDÓëÆ½ÃæABCËù³ÉµÄ½Ç¦È£¬Ôò¦È²»´óÓÚ45¡ãµÄ¸ÅÂÊΪ$\frac{3}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÎªÁ˽â³ÇÊоÓÃñµÄ½¡¿µ×´¿ö£¬Ä³µ÷²é»ú¹¹´ÓÒ»ÉçÇøµÄ120ÃûÄêÇáÈË£¬80ÃûÖÐÄêÈË£¬60ÃûÀÏÄêÈËÖУ¬Ó÷ֲã³éÑù·½·¨³éÈ¡ÁËÒ»¸öÈÝÁ¿ÎªnµÄÑù±¾½øÐе÷²é£¬ÆäÖÐÀÏÄêÈ˳éÈ¡ÁË3Ãû£¬Ôòn=£¨¡¡¡¡£©
A£®26B£®24C£®20D£®13

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸