精英家教网 > 高中数学 > 题目详情
1.已知A(1,1),B(-2,3),O为坐标原点,若直线l:ax+by+1=0与△ABO所围成的区域(包括边界)没有公共点,则a-3b的取值范围为(-∞,$\frac{7}{5}$).

分析 根据所给的三个点的坐标和直线与△ABO所围成的区域(包括边界)没有公共点,得到关于a,b的不等式组,根据不等式组画出可行域,求出目标函数的取值范围.

解答 解:A(1,1),B(-2,3),O为坐标原点,
直线l:ax+by+1=0与△ABO所围成区域(包含边界)
没有公共点,
得不等式组$\left\{\begin{array}{l}{a+b+1>0}\\{-2a+3b+1>0}\end{array}\right.$,
令z=a-3b,
画出不等式组表示的平面区域,
判断知,z=a-3b在A取得最大值,
由$\left\{\begin{array}{l}{a+b+1=0}\\{-2a+3b+1=0}\end{array}\right.$,解得M(-$\frac{2}{5}$,-$\frac{3}{5}$),
可得a-3b<$\frac{7}{5}$.
∴a-3b的取值范围是(-∞,$\frac{7}{5}$).
故答案为:(-∞,$\frac{7}{5}$).

点评 本题考查线性规划的应用,本题解题的关键是写出约束条件,表示出目标函数,画出可行域,得到最优解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.以下命题正确的个数为(  )
(1)存在无数个α,β∈R,使得等式sin(α-β)=sinαcosβ+cosαsinβ成立;
(2)在△ABC中,“A>$\frac{π}{6}$”是“sinA>$\frac{1}{2}$”的充要条件;
(3)命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题是真命题;
(4)命题“若α=$\frac{π}{6}$,则sinα=$\frac{1}{2}$”的否命题是“若α≠$\frac{π}{6}$,则sinα≠$\frac{1}{2}$”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(m,m+1),$\overrightarrow{b}$=(2,-1),若$\overrightarrow{a}⊥\overrightarrow{b}$,则实数m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0.
(1)求在直角坐标平面内满足|PA|=|PB|的点P的方程;
(2)求在直角坐标平面内一点P满足|PA|=|PB|且点P到直线l的距离为2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),当k为何值时,
(1)k$\overrightarrow{a}$$+\overrightarrow{b}$与$\overrightarrow{a}$$-3\overrightarrow{b}$垂直?
(2)k$\overrightarrow{a}$$+\overrightarrow{b}$与$\overrightarrow{a}$$-3\overrightarrow{b}$夹角为钝角?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{{sin{{47}°}-sin{{17}°}cos{{30}°}}}{{cos{{17}°}({sin{{20}°}cos{{10}°}-cos{{160}°}sin{{10}°}})}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|(x+2)(3-2x)<0},B={y|y=x2,x∈R},则A∩(∁RB)=(  )
A.(-∞,-2)B.(-2,3)C.(-∞,-2)∪($\frac{3}{2}$,3)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+lnx,则f′(2)=(  )
A.$\frac{3}{2}$B.1C.-1D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.tan$\frac{3π}{4}$的值为-1.

查看答案和解析>>

同步练习册答案