精英家教网 > 高中数学 > 题目详情
9.已知A(4,-3),B(2,-1)和直线l:4x+3y-2=0.
(1)求在直角坐标平面内满足|PA|=|PB|的点P的方程;
(2)求在直角坐标平面内一点P满足|PA|=|PB|且点P到直线l的距离为2的坐标.

分析 (1)A(4,-3),B(2,-1),可得线段AB的中点M的坐标为(3,-2),又kAB=-1,即可得出线段AB的垂直平分线方程.
(2)设点P的坐标为(a,b),由于点P(a,b)在上述直线上,可得a-b-5=0.又点P(a,b)到直线l:4x+3y-2=0的距离为2,可得$\frac{|4a+3b-2|}{5}$=2,联立解出即可得出.

解答 解:(1)∵A(4,-3),B(2,-1),
∴线段AB的中点M的坐标为(3,-2),又kAB=-1,
∴线段AB的垂直平分线方程为y+2=x-3,
即点P的方程x-y-5=0.…(5分)
(2)设点P的坐标为(a,b),
∵点P(a,b)在上述直线上,∴a-b-5=0.①
又点P(a,b)到直线l:4x+3y-2=0的距离为2,
∴$\frac{|4a+3b-2|}{5}$=2,即4a+3b-2=±10,②…(8分)
联立①②可得$\left\{\begin{array}{l}{a=1}\\{b=-4}\end{array}\right.$或$\left\{\begin{array}{l}{a=\frac{27}{7}}\\{b=-\frac{8}{7}}\end{array}\right.$
∴所求点P的坐标为(1,-4)或$(\frac{27}{7},-\frac{8}{7})$.…(12分)

点评 本题考查了相互垂直的直线斜率之间的关系、垂直平分线的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,为了保护各国元首的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排的方法共有(  )
A.96种B.100种C.124种D.150种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若从甲、乙、丙3位同学中选出2名代表参加学校会议,则甲被选中的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,(x∈R).
(1)若对任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a,求a的取值范围;
(2)若先将y=f(x)的图象上每个点纵坐标不变,横坐标变为原来的2倍,然后再向左平移$\frac{π}{6}$个单位得到函数y=g(x)的图象,求函数y=g(x)-$\frac{1}{3}$在区间[-2π,4π]内的所有零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cos α=$\frac{1}{3}$,α∈($\frac{3π}{2},2π$),则cos$\frac{α}{2}$等于(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.根据所给条件分别求直线的方程.
(1)直线过点(-4,0),倾斜角的正弦为$\frac{\sqrt{10}}{10}$;
(2)过点M(1,-2)的直线分别与x轴,y轴交于P,Q两点,若M为PQ的中点,求PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知A(1,1),B(-2,3),O为坐标原点,若直线l:ax+by+1=0与△ABO所围成的区域(包括边界)没有公共点,则a-3b的取值范围为(-∞,$\frac{7}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,a、b、c分别是角A、B、C的对边,C=2A,sinA=$\frac{\sqrt{7}}{4}$,
(I)求cosC,cosB的值;
(II)若ac=24,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把二进制数110111(2)化为十进制数为(  )
A.51B.53C.55D.57

查看答案和解析>>

同步练习册答案