精英家教网 > 高中数学 > 题目详情
17.已知圆C经过两点A(1,1),B(-2,-2),且在y轴上截得的弦长为4$\sqrt{2}$,半径小于4.
(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A、B两点,且OA⊥OB(O是坐标原点),求a的值.

分析 (1)设出圆的一般方程,由已知列式求得D,E,F的值,结合半径小于4可得圆C的方程;
(2)联立直线方程和圆的方程,化为关于x的一元二次方程,利用根与系数的关系取得A,B的横纵坐标的积,再由OA⊥OB联立求解得答案.

解答 解:(1)设圆的方程为x2+y2+Dx+Ey+F=0.
∵圆C经过两点A(1,1),B(-2,-2),
∴D+E+F+2=0,2D+2E-F-8=0①,
又在y轴上截得的弦长为4$\sqrt{2}$,得y2+Ey+F=0的两根差的绝对值为$4\sqrt{2}$.
即$|{y}_{1}-{y}_{2}|=\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}=\sqrt{{E}^{2}-4F}=4\sqrt{2}$,得E2-4F=32②,
联立①②得$\left\{\begin{array}{l}{D=-2}\\{E=-4}\\{F=4}\end{array}\right.$或$\left\{\begin{array}{l}{D=-10}\\{E=4}\\{F=4}\end{array}\right.$.
∵半径小于4,∴D=-2,E=-4,F=4.
则圆C的方程为x2+y2-2x-4y+4=0;
(2)联立$\left\{\begin{array}{l}{x-y+a=0}\\{{x}^{2}+{y}^{2}-2x-4y+4=0}\end{array}\right.$,得2x2+(2a-6)x+(a-2)2=0.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=3-a,{x}_{1}{x}_{2}=\frac{(a-2)^{2}}{2}$,则${y}_{1}{y}_{2}=({x}_{1}+a)({x}_{2}+a)={x}_{1}{x}_{2}+a({x}_{1}+{x}_{2})+{a}^{2}$.
∵OA⊥OB,
∴${x}_{1}{x}_{2}+{y}_{1}{y}_{2}=2{x}_{1}{x}_{2}+a({x}_{1}+{x}_{2})+{a}^{2}$=$2•\frac{(a-2)^{2}}{2}+a(3-a)+{a}^{2}=0$.
即a2-a+4=0.
此方程无解.
∴满足条件的a值不存在.

点评 本题考查直线与圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=$\frac{1}{3}$DB,点C为圆O上一点,且BC=$\sqrt{3}$AC.点P在圆O所在平面上的正投影为点D,PD=BD.
(Ⅰ)求证:CD⊥PA;
(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.以直角坐标系的原点为极点,x非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ,则曲线C的直角坐标方程为x2+(y-1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2log3(x-a)-1og3(x+3).
(1)当a=3时,解不等式f(x)≥0;
(2)当x∈(-3,+∞)时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线1过点A(4,0),且被圆(x+3)2+(y-1)2=4能截得的弦长为2$\sqrt{3}$.
(1)求圆心到直线l的距离;
(2)求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设曲线x2+y2-2x+4y-4=0关于直线x-2ay+11=0对称,则直线x-2ay+11=0的倾斜角为(  )
A.arctan(-6)B.arctan(-$\frac{1}{6}$)C.π-arctan6D.π-arctan$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,求点A(4,$\frac{7π}{4}$)到这条直线的距离$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)将下列极坐标方程化为直角坐标方程:ρ(2cosθ+5sinθ)-4=0;
(2)将下列参数方程化为普通方程:$\left\{{\begin{array}{l}{x=5cosφ}\\{y=4sinφ}\end{array}}\right.$(φ为参数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{x}$-2x,x∈[1,+∞).
(1)证明:函数f(x)在[1,+∞)上是减函数;
(2)若a+2x>$\frac{1}{x}$在[1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案