分析 (1)当a=3时,不等式f(x)≥0可化为:2log3(x-3)-1og3(x+3)≥0.即$\frac{(x-3)^{2}}{x+3}≥1$,解得答案;
(2)(2)当x∈(-3,+∞)时,f(x)≥0恒成立,则$\left\{\begin{array}{l}-3-a≥0\\ \frac{{(x-a)}^{2}}{x+3}≥1\end{array}\right.$恒成立,解得答案.
解答 解:(1)当a=3时,不等式f(x)≥0可化为:2log3(x-3)-1og3(x+3)≥0.
即$\frac{(x-3)^{2}}{x+3}≥1$,
解得:x≥6,或-3≤x≤1,
∵-3≤x≤1时,x-3<0,故不满足条件,
∴x≥6,
故原不等式的解集为:[6,+∞);
(2)当x∈(-3,+∞)时,f(x)≥0恒成立,
则$\left\{\begin{array}{l}-3-a≥0\\ \frac{{(x-a)}^{2}}{x+3}≥1\end{array}\right.$恒成立,
即a≤-3,且x2-(2a+1)x+a2-3≥0在x∈(-3,+∞)时恒成立,
当a+$\frac{1}{2}$≤-3,即a≤-$\frac{7}{2}$时,a2+6a+9≥0恒成立;
当a+$\frac{1}{2}$>-3,即-$\frac{7}{2}$<a≤-3时,$\frac{4({a}^{2}-3)-(2a+1)^{2}}{4}≥0$,解得:-$\frac{7}{2}$<a≤-$\frac{13}{4}$,
综上所述,实数a的取值范围为a≤-$\frac{13}{4}$.
点评 本题考查的知识点是函数恒成立问题,对数不等式的解法,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com