精英家教网 > 高中数学 > 题目详情
10.集合A={a+3,log2(a+1)},B={1,b},A=B,则b=4.

分析 由A=B,可得$\left\{\begin{array}{l}{a+3=1}\\{lo{g}_{2}(a+1)=b}\end{array}\right.$或$\left\{\begin{array}{l}{a+3=b}\\{lo{g}_{2}(a+1)=1}\end{array}\right.$,解出即可得出.

解答 解:∵A=B,∴$\left\{\begin{array}{l}{a+3=1}\\{lo{g}_{2}(a+1)=b}\end{array}\right.$或$\left\{\begin{array}{l}{a+3=b}\\{lo{g}_{2}(a+1)=1}\end{array}\right.$,
解得a=-2(舍去),或a=1,b=4.
故答案为:4.

点评 本题考查了集合的运算性质、方程的解法、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若AB=4,AC=5,且cosC=$\frac{4}{5}$,则sinB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z=1+ai(a∈R)在复平面对应的点在第一象限,且|$\overrightarrow{z}$|=$\sqrt{5}$,则z的虚部为(  )
A.2B.4C.2iD.4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若定义在R上的函数f(x),满足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2015)+f(2016)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知:cos(${\frac{3π}{2}$+α)=$\frac{1}{3}$,其中α∈(${\frac{π}{2}$,$\frac{3π}{2}}$),则tanα=$-\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C的对边分别是a,b,c,已知向量$\overrightarrow{m}$=(cosB,cosC),$\overrightarrow{n}$=(4a-b,c),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面积S=$\frac{{\sqrt{15}}}{4}$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.直角三角形ABC的三边长分别是a,b,c,且c为斜边的长.
(1)若a,b,c成等比数列,且a=2,求c的值;
(2)已知a,b,c均为正整数,若a,b,c是三个连续的整数,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A、B,C所对的边分别为a、b、c且满足asinB=b,则当$\sqrt{2}$sinB+sinC取得最大值时,cosB的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线的实半轴的长为3,一个焦点坐标是($\sqrt{13}$,0),则双曲线的标准方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1C.-$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1D.-$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案