精英家教网 > 高中数学 > 题目详情
如图:在直角三角形ABC中,已知, D为AC的中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角的大小记为.
⑴求证:平面平面BCD;                     
⑵当时,求的值;            
⑶在⑵的条件下,求点C到平面的距离.
(1)证明:由△PBA为Rt△, ∠C=    AB=   ∵D为AC中点,
∴AD=BD=DC  ∵△ABD为正三角形   又∵E为BD中点
∴BD⊥AE’ BD⊥EF   又由A’EEF=E,且A’E、EF平面A’EF
BD⊥平面A’EF       ∴面A’EF⊥平面BCD………………………4分
(2) BD⊥AE’, BD⊥EF得 
∠A’EF为二面角A’-BD-C的平面角的大小即∠A’EF= ……………5分
以E为坐标原点,得
,得………………10分
(3)用等积法易得所求距离为:………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为BC.PD的中点。

(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.

(1)若CD∥平面PBO,试指出点O的位置,并说明理由;
(2)求证:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在斜三棱柱中,,又顶点在底面上的射影落在上,侧棱与底面角,的中点.

(1)求证:
(2)如果二面角为直二面角,试求侧棱与侧面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
如图,ABCD是平行四边形,

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,四棱锥的底面是矩形,底面边的中点,与平面 所成的角为45°,且
(Ⅰ)求证:平面
(Ⅱ)求二面角的余弦的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥的底面是一个边长为4的正方形,侧面是正三角形,侧面底面
(Ⅰ)求四棱锥的体积;
(Ⅱ)求直线与平面所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图甲所示,在正方形中,EF分别是边的中点,D是EF的中点,现沿SESFEF把这个正方形折成一个几何体(如图乙所示),使三点重合于点G,则下面结论成立的是( )
A.SD⊥平面EFG B.GF⊥平面SEF C.SG⊥平面EFG D.GD⊥平面SEF

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

地球北纬圈上有两点,点在东经处,点在西经处,若地球半径为,则两点的球面距离为 _____________

查看答案和解析>>

同步练习册答案