精英家教网 > 高中数学 > 题目详情
(本题满分12分)
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为BC.PD的中点。

(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。
解析:(1)连结BD交AC于O,
为菱形,则BO=OD…………1分
连结FO,…………3分
平面AFC,平面AFC,
平面AFC…………4分
(2)为BC中点,

…………6分
建立如图所示的空间直角坐标系,
,D(90,2,0)…………8分
平面PAE的一个法向量为……9分
设平面PDC的一个法向量为



…………11分

平面PAE与平面PCD所成锐二面角的余弦值为……12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图:在直角三角形ABC中,已知, D为AC的中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角的大小记为.
⑴求证:平面平面BCD;                     
⑵当时,求的值;            
⑶在⑵的条件下,求点C到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥P-ABCD中,PD上⊥平面ABCD,AD⊥CD,且BD平分∠ADC,
    E为PC的中点,AD=CD=l,BC=PC,
(Ⅰ)证明PA∥平面BDE;
(Ⅱ)证明AC⊥平面PBD:
(Ⅲ)求四棱锥P-ABCD的体积,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分8分)
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
图为一简单组合体,其底面ABCD为正方形,平面

(1)求证://平面
(2)若N为线段的中点,求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PA⊥底面ABCD,PA=4,M为PA的中点,N为AB的中点.

(1)求三棱锥P-CDM的体积;
(2)求二面角A-DN-M的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥PABCD中,PA底面ABCD,DAB为直角,ABCD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB平面BEF
(Ⅱ)设PAk ·AB,若平面与平面的夹角大于,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)在棱长为的正方体中,是线段的中点,.
(Ⅰ) 求证:^;(Ⅱ) 求证:∥平面;(Ⅲ) 求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面ABCD是边长为2的菱形,,点M
是棱PC的中点,平面ABCD,AC、BD交于点O。

(1)求证:,求证:AM平面PBD;
(2)若二面角M—AB—D的余弦值等于,求PA的长

查看答案和解析>>

同步练习册答案