精英家教网 > 高中数学 > 题目详情
(本题满分8分)
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由。

因为

因为
所以,冰淇淋融化了,不会溢出杯子.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知四棱锥P—ABCD中,平面ABCD,底面ABCD为菱形,,AB=PA=2,E.F分别为BC.PD的中点。

(Ⅰ)求证:PB//平面AFC;
(Ⅱ)求平面PAE与平面PCD所成锐二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
如图,ABCD是平行四边形,

(1)求证:
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,


(Ⅰ)求证:
(Ⅱ)在上找一点,使得平面,请确定点的位置,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知四棱锥,底面为菱形,平面分别是的中点.
(Ⅰ)判定AE与PD是否垂直,并说明理由
(Ⅱ)若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,边的中点.
(Ⅰ)求证:;                                    
(Ⅱ)求证:∥面. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图所示,正方形和矩形所在的平面相互垂直,已知.
(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)
各棱长均为2的斜三棱柱ABC—DEF中,已知BF⊥AE,
BF∩CE=O,AB=AE,连结AO。
(I)求证:AO⊥平面FEBC。
(II)求二面角B—AC—E的大小。
(III)求三棱锥B—DEF的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

地球北纬圈上有两点,点在东经处,点在西经处,若地球半径为,则两点的球面距离为 _____________

查看答案和解析>>

同步练习册答案